A Tour Of C++ PDF (Limited Copy)

Bjarne Stroustrup

A Tour of C++

Bjarne Stroustrup

Booiev

More Free Book A =
[m] ot
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

A Tour Of C++ Summary

"Master C++ Essentias for Efficient Software Devel opment.”
Written by Booksl

More Free Book %\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the book

In"A Tour of C++," Bjarne Stroustrup, the creator of the C++ programming
language, invites you on an enlightening journey through the heart and soul
of one of the world's most powerful and versatile languages. This book is not
your typical manual; it's an expertly crafted tour offering a panoramic view
of modern C++, distilled with the depth of experience and wisdom only a
pioneer can provide. Whether you are a seasoned programmer looking to
refresh and degpen your understanding or a new enthusiast seeking to
familiarize yourself with its capabilities, Stroustrup’ s insightful guidance
covers everything from foundational elements to advanced features,
sprinkled with real-world applications and contemporary techniques. "A
Tour of C++" presents a unique opportunity not just to learn alanguage, but
to enter aworld of efficient, expressive, and reliable programming that
seamlessly merges robust performance with elegant ssimplicity. Unlock the
full potential of C++ and redefine what you imagined possible through this
concise, accessible, and engaging journey — your ticket to mastering a
language that shapes the future of computing. Dive in and transform how
you think about software development with the genius of Bjarne Stroustrup

as your guide.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the author

Bjarne Stroustrup, a pioneering figure in the realm of computer
programming, is best known as the creator of the influential C++
programming language. Born in Aarhus, Denmark, in 1950, Stroustrup
pursued academic excellence with afocus on computer science and
mathematics, eventually earning a Ph.D. from the University of Cambridge.
Hisinnovative work on C++ began in 1979 at Bell Labs, where he diligently
sought to enhance the C programming language by integrating
object-oriented features. Throughout hisillustrious career, Stroustrup's
contributions have been invaluable in shaping modern software
development, and his academic influences are echoed in his numerous
publications. As a distinguished author, researcher, and educator, his
authoritative books, including "A Tour of C++," continue to guide both
novice and seasoned devel opers through the intricacies of one of the world's

most widespread and enduring programming languages.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

N 4 th(

'
Try Bookey App to read 1000+
summary of world best books
Unlock Titles, Topics
New titles added every week

Brand %— Leadership & Collaboration @ Time Management (=) Relationship & Communication
ness Strategy @ Creativity Public Money & Investing @ Know Yourself {’_’P Positive F
? Entrepreneurship World History C\Q Parent-Child Communication @ Self-care é.i.:\ Mind & Spi

Insights of world best books

THINKING, ATOMIC HABITS
FAST AND SLOW Mastering the art of power, to

have the strength to confront
complicated situations

—

M

HOW TO TALK
TO ANYONE D:,::I).Du

Chiv

N'

&

pn
-

Free Trial with Bookey:

https://ohjcz-alternate.app.link/zWumPVSnuOb

Summary Content List

Chapter 1. Contents

Chapter 2: 1 The Basics

Chapter 3: 2 User-Defined Types
Chapter 4: 3 Modularity

Chapter 5: 4 Classes

Chapter 6: 5 Templates

Chapter 7: 6 Library Overview
Chapter 8: 7 Strings and Regular Expressions
Chapter 9: 8 1/0 Streams
Chapter 10: 9 Containers
Chapter 11: 10 Algorithms
Chapter 12: 11 Utilities

Chapter 13: 12 Numerics
Chapter 14: 13 Concurrency

Chapter 15: 14 History and Compatibility

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 1 Summary: Contents

Chapter 1. TheBasics

This chapter introduces fundamental programming concepts, starting with a
simple "Hello, World!" program to illustrate the basics of writing and
compiling a program. It then covers functions, which are blocks of code
designed to perform specific tasks. Alongside functions, it explains types,
variables, arithmetic, and the importance of understanding the scope of
variables. Constants, pointers, arrays, and references are introduced as ways
to efficiently manage and manipulate data. The chapter concludes with

advice on testing programs to ensure functionality.

Chapter 2: User-Defined Types

Expanding beyond basic data types, this chapter discusses user-defined
types, crucial for creating complex applications. It explains structures, which
group different variables under a single name, and classes, which are the
foundation of object-oriented programming. Unions are introduced as a way
to store different data types in the same memory location, and enumerations
are explained as away to define sets of named integer constants. Each

section provides advice on effective usage of these constructs.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 3: Modularity

Modularity is key to managing complex programs. This chapter outlines
techniques for organizing code using separate compilation, which allows
parts of programs to be compiled independently. Namespaces are explained
as away to avoid naming conflicts, and error handling is highlighted as an
essential aspect of robust programming. The chapter includes advice on how

to effectively structure and manage code modules.

Chapter 4. Classes

Delving deeper into object-oriented programming, this chapter examines
classesin detail. It differentiates between concrete and abstract types,
focusing on the use of virtual functions and class hierarchies to create
flexible and reusable code. The chapter also discusses copying and moving
objects efficiently, providing practical advice on managing class-based

designs.

Chapter 5. Templates

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Templates allow for generic programming by enabling functions and classes
to operate with arbitrary types. This chapter explores parameterized types
and function templates, advancing to concepts and generic programming
techniques. Function objects and variadic templates are covered to
demonstrate more complex use cases. The template compilation model is

discussed alongside advice for maximizing the power of templates.

Chapter 6: Library Overview

An overview of the standard library componentsis presented, crucial for
leveraging existing functionality. The chapter lists standard-library headers
and namespaces, offering advice on integrating and utilizing library features

effectively within programs.

Chapter 7. Strings and Regular Expressions

Strings and regular expressions are vital for text processing. This chapter
covers the manipulation of strings and introduces regular expressions as a
tool for pattern matching in text. Practical advice is given on using these

powerful features to process and analyze text data efficiently.

Chapter 8: 1/0 Streams

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Input and output (I/0O) are fundamental for interacting with users and other
systems. This chapter explains output and input operations, |/O state
management, and handling user-defined types. File and string streams are
discussed as methods for more complex 1/0 tasks, with advice on formatting

and managing data flow effectively.

Chapter 9: Containers

Containers are essential for managing collections of data. This chapter
explores various container types like vectors, lists, maps, and
unordered_maps, highlighting their appropriate use cases. An overview of
container characteristicsis provided, alongside advice on selecting the right

container for specific needs.

Chapter 10: Algorithms

The use of algorithmsis crucial for efficient data processing. This chapter
discusses iterators, which facilitate element access in containers, various

iterator types, and stream iterators. Predicates and an overview of container

algorithms are provided, with advice on selecting and applying algorithms

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

effectively in programming tasks.

Chapter 11: Utilities

Utilities provide essential services like resource management and time
handling. This chapter examines specialized containers, function adaptors,
and type functions, offering advice on leveraging utility features to enhance

program functionality and efficiency.

Chapter 12: Numerics

Mathematical operations are made succinct through numerics. This chapter
explores mathematical functions, numerical algorithms, and complex
numbers, alongside random numbers and vector arithmetic. Numeric limits
are discussed, with advice on leveraging numerical capabilitiesto solve

complex problems.

Chapter 13: Concurrency

Concurrency isintegral for modern computing. This chapter covers tasks,

threads, and the mechanisms for passing arguments and returning resultsin a

Dlgrid

=
More Free Book R
Ot 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

concurrent context. Sharing data between tasks, waiting for events, and task
communication strategies are explained, with practical advice on

implementing concurrent operations effectively.

Chapter 14: History and Compatibility

The history of C++ provides context for its evolution and features. This
chapter traces the language's development, including the significant C++11
extensions, and discusses C/C++ compatibility issues. A bibliography is
provided for further reading, along with advice on maintaining compatibility

and understanding historical context in current C++ programming.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 2 Summary: 1 The Basics

Chapter 1. The Basics

This chapter provides an introductory overview of the core concepts and
principles in C++ programming, catering especially to procedural
programming styles derived from C. The chapter is structured to gradually
introduce fundamental notions, from the basic structure of a C++ program to

more nuanced details such as type safety and memory management.

1.1 Introduction

Understanding C++ begins with grasping its notation, memory model, and
how it organizes code. C++ supports procedural programming styles often
seen in C, which involve functions and basic control flow mechanisms.

1.2 Programs

C++ isastatically typed, compiled language, meaning that type declarations

are checked at compile-time, and its programs are processed into executable

filesfor specific hardware and systems. Source code files undergo

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

compilation into object files, followed by linkage into executables. While
executables are not inherently portable across different systems, source code
aims to support compatibility. C++ encompasses core language features (like
types and loops) and standard-library components (like containers and 1/0

operations), reflective of its expressive and efficient nature.

1.3 Hello, World!

The simplest C++ program is the definition of “main()", the mandatory
global entry point function. A more practical "Hello, World!" program
outputs a greeting using standard 1/0 streams. Essential parts include

“#include' for stream declarations and “std::cout” for output.

1.4 Functions

Functions specify operations, defined with a return type and arguments.
They are declared and optionally overloaded to accept varying argument
types and maintain operations' uniformity. Functions facilitate code

comprehensibility and reusability by breaking tasks into manageabl e pieces.

1.5 Types, Variables, and Arithmetic

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Variablesin C++ are declared with explicit types, dictating operations
available to them. C++ supports fundamental typeslike "int’, "char’, and
“double’, alowing both arithmetic and logical operations. Initialization
syntax varies from traditional =" to modern {} " initializers, enhancing type
safety by preventing undesirable conversions. "auto can deduce a variable's

type from itsinitializer, promoting cleaner code.

1.6 Scope and Lifetime

Declarations introduce names (variables, functions) into scopes, determining
their visibility and lifespan within the program. Primary scope categories
include local, class, and namespace scopes. Objects must be initialized, with

their lifetime depending on their classification (e.g., local vs. global).

1.7 Constants

C++ distinguishes constants with “const™ (immutability promise) and
“constexpr” (compile-time evaluation), guiding efficient memory and
performance management. Functions marked “constexpr™ allow

compile-time usage, beneficial for optimizations and clear design.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

1.8 Pointers, Arrays, and References

Arrays and pointers are declared using '[]” and "*°, respectively, while
references ('& ') allow indirect modification without pointers syntactic
overhead. Array bounds must be constant expressions, and pointer
manipulations (e.g., nullptr' vs. NULL ") ensure both safety and legacy
compatibility.

1.9 Tests

Control flow uses "if", “switch’, “for’, and "while" statements to process
conditions and iterations. Input/output is handled through standard streams,

with input validation improving reliability.

1.10 Advice

Tips and best practices emphasize understanding and applying C++'s broad
capabilities without unnecessary complexity. Focus on creating meaningful
functions, maintaining brevity and clarity, using type-safe initializations, and

following consistent style conventions for maintainable code.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Overall, this chapter lays the foundation for effective C++ programming,
encouraging clear, efficient, and type-safe coding practices while utilizing

the language's robust features.

More Free Book %\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 3 Summary: 2 User-Defined Types

Chapter 2. User-Defined Types

This chapter delves into the concept of user-defined typesin C++, essential

for constructing complex data structures beyond built-in types. Built-in types
in C++ are efficient but low-level, reflecting computer hardware capabilities
directly. They lack high-level facilities for advanced programming, which is

where user-defined types, such as classes and enumerations, come into play.
2.1 Introduction

User-defined types in C++ allow programmers to create types with specific
representations and operations, facilitating the development of advanced
applications. By building on fundamental types and abstraction mechanisms,
these custom types enable more refined and elegant code design. The
subsequent sections explore the creation and utilization of user-defined
types, with future chapters (4-5) offering a comprehensive view of
abstraction mechanisms and programming styles, and chapters (6-13)

discussing the standard library, largely composed of user-defined types.

2.2 Structures

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Structures, or structs, are one of the simplest user-defined typesin C++.
They alow grouping of related data. For instance, a Vector™ structure can
encapsulate an integer "sz” for size and a pointer “elem’ for storing elements.
However, proper initialization is crucial, often requiring a function like
“vector_init()" to allocate memory dynamically on the free store (heap).
Structures provide afoundation for more complex user-defined types but
require detailed understanding from the user, as demonstrated by the
‘read_and_sum()" function. While the standard library offers a more refined
“vector', understanding structsis vital for illustrating language features and

design techniques.

2.3 Classes

Classes introduce a more sophisticated level of user-defined types, ensuring
acloser tie between data representation and operations. Unlike structs,
classes offer private and public members, with constructors for initialization,
improving data abstraction and encapsulation. A "Vector™ class example
demonstrates an interface with public functions like “operator[] ()" for
element access and "size()” for querying the number of elements, while
keeping data members private. This structure simplifies use, prevents
unintended data manipulation, and supports future enhancements, with
topics like error handling and memory management to be explored in later

sections.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

2.4 Unions

Unions are similar to structs but store all members at the same address, using
only as much space as the largest member. This allows unionsto hold a
value for only one member at atime. They are useful in scenarios like
symbol tables but require careful management to avoid errorsin type
tracking. Encapsulating unions within a class with atype field can improve
reliability and safety, minimizing errors associated with handling raw

unions.

2.5 Enumer ations

Enumerations in C++ allow the definition of named constant sets. With
“enum class’, these types are strongly typed and scoped, preventing mix-ups
between different enumerations and offering safer, more readable code. For
instance, "Color::red” and "Traffic_light::red” are distinct. Enumerations can
include user-defined operators for enhanced functionality, like a custom
increment operator for a "Traffic_light” enum. The traditional, less restricted
"plain” enums lack these scoped features but remain prevalent in existing

C++ codes.

2.6 Advice

Key takeaways emphasi ze structuring related data into classes and structs,

Dlgrid

=
More Free Book R
Ot 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

leveraging classes for encapsulation and constructors for easing
initialization, avoiding raw unions, using enumerations for constant sets, and

preferring “enum class' for safer, more predictable code.

This chapter sets the foundation for understanding and implementing
user-defined types, crucial for effectively using C++'sfull potential and
facilitating the transition to advanced programming concepts and the

standard library's offerings.

Section Summary

User-defined types in C++ allow creating advanced data types with
2.1 specific operations. These custom types build on basic types to create
Introduction sophisticated applications. Future chapters will further delve into
abstraction mechanisms and user-defined types in the standard library.

Structures are basic user-defined types grouping related data. Proper
initialization is critical, usually requiring custom functions. Although the
standard library offers advanced collections, understanding structs is
essential for mastering C++ features and design.

2.2 Structures

Classes provide a sophisticated level of user-defined types, offering
data encapsulation and abstraction via private and public members.

2.3 Classes Classes improve safety by preventing unintended data manipulation
and simplifying enhancement through structures like constructors.
Unions store all members at the same address, useful for

2 4 Unions single-member value storage. To avoid errors in type tracking,

encapsulate unions within classes, adding a type field for enhanced
safety and reliability.

Enumerations enable named constant sets. "enum class’ offers strong
2.5 typing and scoping for safer code, preventing mix-ups between
Enumerations different enums. While traditional enums lack these features, they are
common in legacy C++ code.

More Free Book

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Summary

Advice includes using classes/structs for organizing related data,
2 6 Advice leveraging encapsulation, using constructors for initialization, avoiding

raw unions, opting for enums for constant sets, and preferring "enum
class’ for more dependable code.

More Free Book

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Classes promote data abstraction and encapsulation
Critical Interpretation: Imagine navigating the complexity of daily life
without any structure or boundaries. Just like how you use personal
organizers to compartmentalize tasks, classes in C++ empower you to
wrap related data and functionsinto asingular unit. Thislevel of
organization and protection allows you to enclose your thoughts and
routines privately, sharing only what’ s necessary, minimizing chaos,
Moreover, it guides you towards improvements and innovation, akin
to taking on new hobbies or refining a skill, without external
interference. By embracing the concept of abstraction that classes
offer, you can creatively shape your life, ensuring each component is
well accounted for and safeguarded, thereby fostering a more

harmonious and efficient existence.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 4: 3 Modularity

#i# Chapter 3: Modularity
I ntroduction

In C++, a program consists of various independently developed components
such as functions, user-defined types, class hierarchies, and templates. A
crucia aspect of managing these components is distinguishing between their
interfaces and implementations. Interfacesin C++ are defined through
declarations, specifying everything necessary to utilize afunction or type.
For instance, afunction declaration might outline how a function like “sgrt()
operates, while a class declaration such as "Vector™ provides an overview of

its operations and elements without detailing their implementation.

Separ ate Compilation

C++ facilitates modularity through separate compilation, where only the
necessary declarations of functions and types are visible to user code, while

their definitions reside in separate files that are compiled individually. This

technique organizes a program into semi-independent code segments,

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

minimizing compilation times and enforcing segregation of distinct program
sections, thereby reducing errors. Libraries often consist of these separately

compiled components, with interfaces specified in header files.

The use of header filesis a standard practice, where the interface of a
module, like "Vector', isdeclared in afile to be included where needed. This
ensures consistency across different parts of the program that use the same

interface while enabling separate compilation.

Namespaces

In addition to organizing code into components like functions and classes,
C++ offers namespaces to group related declarations and avoid name
conflicts. By encapsulating code in a namespace, identifiers within it won't
clatter with names outside the namespace. Thisis particularly helpful when
developing libraries or experimenting with new implementations, such as a

custom complex number class.

Namespaces are accessed by qualifying names with the namespace
identifier, such as "My _code::main’. The use of a ‘using” directive can make
names from a namespace accessible without qualification, facilitating more
straightforward integration with standard library components or other

Namespaces.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Error Handling

Error handling in C++ isintegral to reliable program development,
extending beyond language constructs into programming strategies. While
the type system itself provides some error detection, higher-level constructs
and abstraction—from user-defined types to algorithms—help simplify
programming and reduce mistakes. However, as programs grow in
complexity, particularly through extensive library use, establishing error

handling standards becomes essential.

Exceptions

Exceptions provide a mechanism for detecting and signaling runtime errors,
especially in scenarios where the function caller and implementer are
distinct, such as with library components. C++ allows functions like
“Vector::operator[]()” to detect out-of-range access and alert the caller by
throwing an exception. This system separates error detection from handling,
as the latter can be addressed anywhere in the call stack that includes a

try-block for specific exceptions.

| nvariants

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Invariants are critical for class and function design, expressing conditions
that should always hold true. For classes, invariants ensure internal
consistency, while preconditions for functions dictate valid input
expectations. Invariants help refine design precision, aid in error prevention,
and underpin resource management techniques employed by constructors

and destructorsin C++.

Static Assertions

Static assertionsin C++ allow for compile-time error detection. They enable
checks on properties known during compilation, reporting issues as errors if
certain conditions (expressed as constant expressions) are not met. This
mechanism supports developers by flagging issues earlier in the
development process, such as ensuring adequate storage space for certain

data types.

Conclusion

Modularity in C++ leverages interface declarations, separate compilation,

namespaces, and robust error handling to build well-organized, efficient, and

maintainable code. Through the precise specification of interactions between

Dlgrid

=
More Free Book R
Ot 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

components and the use of compile-time checks, developers can design

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey %‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

People fave bpag [=F?
N Crazy

=t
o ALRTA Y a&_{_
\“:.:-\-:m L O QAN

)
We
ok

Oe

Why Bookey is must have App
for Book Lovers

30min Content

@ The deeper and clearer interpretation we provide, the better
grasp of each title you have.

E Text and Audio format

Absorb knowledge even in fragmented time.

—v Quiz
Check whether you have mastered what you just learned.

A® And more
oo Multiple Voices & fonts, Mind Map, Quotes, IdeaClips...

\ L
Free Trial with Bookey~

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 5 Summary: 4 Classes

This chapter introduces the concept of classesin C++, central to
understanding its support for abstraction and resource management. C++
revolves around object-oriented programming, and the classis a
fundamental building block enabling devel opers to define new types that
represent meaningful conceptsin their code. Consequently, awell-structured
program primarily consists of various classes, making it easier to
understand, maintain, and extend. There are three fundamental kinds of

classes: concrete classes, abstract classes, and classes in class hierarchies.

Concrete Types. These are user-defined types that resemble built-in
types like “int” or “float’. Examples include a complex number type or an
infinite-precision integer that behaves operationally like a built-in type but
can offer aricher set of operations or semantics. A defining feature of a
concrete classisthat its representation is embedded in its definition. It
typically holds al the objects data or pointersto it directly within its
structure. This setup, in conjunction with features like constructors,
destructors, and methods for copying objects, allows for efficient use of

memory and resources.
An Arithmetic Type (Complex): A simple yet illustrative example of a

concrete type isthe "‘complex” class. It represents complex numbers using

two doubles for the real and imaginary parts and overloads operators for

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

addition, subtraction, multiplication, and division. These operations are
made intuitive and efficient through function inlining, which often implies

avoiding overhead of function calls during runtime, enhancing performance.

A Container (Vector): The chapter highlights how a Vector can act asa
container holding a dynamic array, managing resources neatly through
constructors and destructors. C++ employs the RAIl idiom (Resource
Acquisition Is Initialization) to manage memory: memory is allocated at
construction and deallocated at destruction, preventing leaks. Furthermore,
convenience features like initializer-list constructors simplify the process of

initializing containers with alist of values.

Abstract Types. Unlike concrete types, abstract classes do not have a
defined representation; instead, they provide an interface. These classes
encapsulate the implementation and are often manipul ated through pointers
or references. An exampleisthe "Container class, which offers an interface
for different container types without specifying their internal workings.
These types are indispensable when designing polymorphic systems where

multiple derived classes share a common interface.

Class Hierarchies: With class hierarchies, different classes are related
through inheritance. This setup allows an object of a derived classto be
treated as an object of a base class. This inheritance scheme can be for

sharing interfaces or for sharing implementation details. The chapter

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

illustrates this with a hypothetical “Shape™ hierarchy featuring classes like
"Circle and "Smiley" that extend a base class "Shape'. The hierarchy is used
to demonstrate concepts like function overriding, abstract base classes, and

the polymorphic behavior enabled by virtual functions and dynamic binding.

Virtual Functions: A significant feature in C++ isthe virtual function,
allowing function callsto be resolved at runtime, enabling polymorphism.
The chapter explains virtual functions' mechanisms, including how they
leverage the virtual table (vtbl) within class objects to resolve functions
correctly in situations where multiple forms of a class hierarchy are

involved.

Copy and M ove Semantics. The chapter concludes by discussing copy
and move operations, critical aspects of modern C++ related to resource
management. Copy constructors and copy assignments allow object values
to be duplicated while maintaining resource integrity. In contrast, move
operations optimize the transfer of resource ownership, particularly for
objects like containers or threads that are costly to copy but need to be

shifted efficiently between different scopes or functions.

Overadll, this chapter sets the groundwork for understanding how classes can
encapsulate resources and behaviors, paving the way for cleaner, safer, and
more flexible code in C++. It establishes a foundation upon which more

advanced features like templates and standard libraries build upon in C++

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

programming.

More Free Book %\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 6 Summary: 5 Templates

Chapter 5. Templates

This chapter delves into the powerful and versatile concept of templatesin
C++. Templates are a cornerstone of generic programming, enabling
developers to write code that is type-agnostic and thus reusable across

various data types.

5.1 Introduction

At the heart of templatesisthe ideathat a data structure, like a vector,
should not inherently know about the type of elementsit stores. Instead,
templates allow these structures to be parameterized by types or values. This
approach aligns with Stroustrup’ s idea of separating general concepts from
specific implementations, enabling programmers to specify types only when

they are needed, such as when defining specific elements like doubles.

5.2 Parameterized Types

By using templates, a specific type like avector of doublesis generalized to

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

avector of any type. The template keyword introduces the parameterized
type, making the Vector class flexible enough to handle characters, strings,
or even lists of integers. Templates allow objects to be manipulated without
incurring runtime overhead, as code is compiled for specific types.
Additionally, templates can take value arguments, allowing for operations on

fixed-size buffers without dynamic memory overhead.

5.3 Function Templates

Beyond data structures, templates are used widely in functions. Function
templates enable calculations, such as summing elements of a container, to
operate on different data types without duplication of code. This flexibility
allows types and initial values to be deduced automatically, simplifying

programming and avoiding explicit type specification.

5.4 Concepts and Generic Programming

Templates are central to generic programming; they allow algorithms to be
applied to any type meeting specified requirements. While C++11 doesn’t
directly express concepts (the requirements for template arguments), the key
IS recognizing reusable, fundamental abstractions like integer, vector, and

container. Concepts aid in ensuring that types behave consistently with these

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

abstractions.

5.5 Function Objects

Templates can define objects callable like functions, known as function
objects or functors. These are widely used as algorithm arguments,
encapsulating not only functionality but data, such asavaueto be
compared. This encapsulation makes them more efficient than alternatives

and flexible tools in generic programming.

5.6 Variadic Templates

Variadic templates further extend templates by accepting an arbitrary
number of arguments. This feature ssimplifies operations like printing an
arbitrary list of values, enabling succinct and flexible code. However, while
they provide immense flexibility, managing their arguments' types can be

complex.

5.7 Aliases

Aliases serve as synonyms for types or templates, allowing for clearer, more

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

maintainable code, crucial in writing portable and implementation-hidden
code. Standard aliaseslike size t exemplify their utility in achieving code

consistency and enabling platform-agnostic code.

5.8 Template Compilation M od€l

Templates use a compile-time variant of duck typing, relying on the
structure of arguments rather than explicit interfaces. Consequently, to use a
template, its definition must be available during compilation. Errors from

templates can often appear complex due to their delayed type checking.

5.9 Advice

This chapter concludes with practical advice, emphasizing templates ability
to express algorithms for multiple types, enhance abstraction, and promote
type safety. It advises designing templates with clear concepts in mind,
utilizing function objects and aliases effectively, and ensuring template

definitions are always in scope to mitigate common compilation issues.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Templates as a Tool for Abstraction and Reusability
Critical Interpretation: Imagine templates as a master craftsman's
toolkit, offering you the ability to design objects once and then
replicate their versatility across diverse scenarios. Thislesson isn't
confined to C++ coding; it resonates deeply with life's broader scope.
By fostering a mindset that embraces abstraction, you learn to view
challenges not as isolated puzzles but as opportunities for reusable
solutions. Just as templates detach functionality from specific
implementations, you can cultivate a perspective that transcends
particulars, enabling you to adapt and apply core principles across
varied aspects of your life. This empowers you to innovate and solve
problems creatively, using your mental templates to build, adapt, and

enhance your experiences with efficiency and flexibility.

More Free Book %‘\ R
Scan to ov.vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 7 Summary: 6 Library Overview

#i## Chapter 6: Library Overview

This chapter provides an introduction to the key components of the standard
C++ library, which is crucia for enhancing the functionality and efficiency
of programming. The chapter outlines the various e ements of the library and

offers advice on using these resources effectively.
#H#H 6.1 Introduction

No significant application is built solely with the raw elements of a
programming language; instead, libraries serve as essential building blocks.
Libraries ssimplify complex tasks and form the backbone of most
programming projects. This chapter, building on the concepts from Chapters
1-5, starts atour through the standard C++ library. It highlights essential
library types such as “string’, "ostream’, "vector', ‘map’, ‘unique_ptr-,
“thread’, ‘regex’, and "complex’, among others. The primary am isto
provide an understanding of these components without getting bogged down
by intricate details. The C++ standard library covers a significant portion of
the ISO C++ standard due to its extensive specifications. Developers are
encouraged to prefer standard library components over custom solutions

because of their thorough design, implementation, and ongoing maintenance.

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

While other systems (like GUIs, Web interfaces, and database interfaces) are
often included in specific C++ implementations, this chapter focuses on the

standard library to ensure portability and self-containment.
#H#H 6.2 Standard-Library Components
The standard library's offerings can be categorized as follows:

- Run-time support: Thisincludes memory allocation and run-time type
information.

- C Standard Library: Incorporates slight changes to avoid type system
violations.

- Strings: Support for international character sets and localization.
- Regular Expressions: Facilities for pattern matching.

- I/O Streams. An extensible framework supporting custom types,
streams, and locales.

- Containersand Algorithms Framework: Known as STL, it supports
extensible container and algorithm implementation.

- Numerical Computation: Includes mathematical functions, complex
numbers, vectors, and random number generators.

- Concurrency Support: Facilitates multi-threaded programming with

foundational support for expanding concurrency models.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

- Template M etapr ogramming Utilities: Offers type traits and STL-style
generic programming tools.

- Smart Pointers. Resource management tools like "unique ptr™ and
“shared _ptr".

- Special-pur pose Containers: Includes arrays, bitsets, and tuples.

Theinclusion criteriafor any class are its broad applicability to C++

programmers, generality without adding overhead, and ease of use.
#HH# 6.3 Standard-Library Headers and Namespace

Standard library features are accessed via specific headers. For instance,
“#include <string>" and #include <list>" alow accessto the "std::string” and
“std::list” classes. The library's facilities exist within the “std” namespace,
necessitating the use of the “std::” prefix or the "using namespace std;"
directive to simplify code. While the examples in this book often omit the
prefix, real-world programs should include necessary headers and make

specific namespace declarations to ensure clarity.

A partia list of standard-library headers includes components for algorithms
("<agorithm>"), arrays, time management, mathematical functions, complex
numbers, parallel execution ("<thread>"), regular expressions, streams, and

smart pointers, among others. Headers from the C standard library are also

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

provided, with C++-specific versions that place declarations within the “std®

namespace.

H#itHt 6.4 Advice

1. The content corresponds to more detailed descriptions found in Chapter
30 of Stroustrup’ s book.

2. Leverage librariesinstead of creating new solutions,

3. Prioritize using the standard library when viable.

4. The standard library may not be universally ideal.

5. Always "#include necessary headers.

6. Remember that standard-library resources are within the “std” namespace.

This overview is designed to familiarize readers with the fundamental tools
provided by the C++ standard library, emphasizing itsrole in effective

programming practices.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 8: 7 Strings and Regular Expressions

Chapter 7 of the book provides an insightful overview of the concepts and
practical applications of strings and regular expressions within the C++
programming environment. This chapter is divided into several sections,

each focusing on different aspects of these fundamental tools for text

manipulation in software devel opment.

Introduction

Text manipulation isintegral to most programming tasks. C++ simplifies
this by providing a standard string type that saves developers from the
complexity of C-style character arrays, which employ pointers for text
handling. Furthermore, the language includes support for regular expressions
to identify patterns within text, akin to regex capabilities in many modern
languages. Both strings and regex functions accommodate various character

types, including Unicode, broadening their applicability.

HH Strings

The C++ standard library's string type complements string literals and
facilitates operations like concatenation. For instance, developers can easily
construct email addresses by merging strings. Strings in C++ are mutable,
allowing manipulation through "=", "+=", and methods like "substr()" for
obtaining substrings or “replace()” for altering string content. This flexibility

supports essential operations, such as adjusting string content to replace or

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

format names, enhancing usability. Notably, C++ strings can be compared

against each other or with string literalsin logical expressions.

The implementation of astring is usually optimized through a technique
known as the short-string optimization. This method keeps short strings
within the object itself, whereas longer strings are stored in free store,
minimizing memory overhead and accommodating differing character sets.
This optimization helps with memory management efficiency, especially
pertinent in multi-threaded environments where memory allocation can be

resource-intensive.

Regular Expressions

Regular expressions (regex) are arobust tool for pattern-based text
processing. They allow developers to describe complex text patterns
succinctly and efficiently locate these within text streams. The C++ standard
library implements support for regular expressions viathe “std::regex” class
and auxiliary functions. For example, aregex pattern can be used to identify

U.S. postal codes within atext.

Regular expressions operate through several key functions:

- ‘regex_match()" checksif astring fully matches a pattern.

- “regex_search()” locates substrings that conform to a pattern in longer text
collections.

- ‘regex_replace()” searches for patterns and replaces them with alternatives

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

in a data stream.

Developers unfamiliar with regex may find it beneficial to explore various

regex resources for a deeper understanding.

#H# Searching

Within the text, asimple way to deploy regex is by searching a stream using
a specified pattern. ‘regex_search()” istypically used here, which performs
the search and, if successful, populates a match results object. This approach
is particularly useful for processing input streams like files or network data,

where pattern identification and extraction are required.

#H# terators

C++ offersregex iterators for traversing and processing streamsto find
pattern matches. For instance, aregex_iterator can enumerate words within a
text input, illustrating the ability to handle text operations beyond simple
matches. The default regex_iterator indicates the termination of a sequence,
and regex iterators provide a means to iterate through text efficiently, though
they come with specific constraints like supporting only bidirectional

iteration.
H#Ht Advice

The chapter concludes with actionable advice:

- Always prefer C++ string operations over C-style functions.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

- Utilize strings for variable and member declarations rather than as base
classes.

- Leverage regex for standard pattern matching tasks and use raw string
literals for complex patterns.

- Consider regex_search() to find patternsin streams and regex_iterator for

searching stream pattern matches.

Overadll, this chapter serves as a comprehensive guide to understanding and
applying strings and regular expressions within C++, emphasizing standard

practices. optimization techniaues. and practical usage scenarios to manage

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey x‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

tes after each book summary
erstanding but also make the
and engaging. Bookey has
ling for me.

Love it!

ling habit
)'s design
1al growth

'z « 3
:; ‘:
’ \
Y/ App Store \V/

' Editors’ Choice ‘:."

Positive feedback

Fantastic!!! Fi
I'm amazed by the variety of books and languages Al
Bookey supports. It's not just an app, it's a gateway bc
to global knowledge. Plus, earning points for charity to
is a big plus! m

Bookey offers me time to go through the
important parts of a book. It also gives me enough
idea whether or not I should purchase the whole

book version or not! It is easy to use!

Awesome app!

I love audiobooks but don't always have time to listen
to the entire book! bookey allows me to get a summary
of the highlights of the book I'm interested in!!! What a
great concept !!'highly recommended!

Time saver!

Bookey is my go-to app for
summaries are concise, in¢
curated. It's like having acc
right at my fingertips!

Beautiful App

\ L
Free Trial with Bookey~

This app is a lifesaver for book lovers witk
busy schedules. The summaries are spot
on, and the mind maps help reinforce wh
I've learned. Highly recommend!

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 9 Summary: 81/0 Streams

Chapter 8 of the text focuses on Input/Output (1/O) Streamsin C++
programming, providing a comprehensive understanding of handling text
and numeric datainput and output through formatted, unformatted, and
buffered streams. This chapter aimsto equip learners with the knowledge to
effectively manage data |/O using standard and user-defined types,

leveraging the C++ iostream library.

Introduction to 1/O Streams

Theiostream library in C++ alows for converting objects to and from
streams of bytes, enabling both input and output operations. The two
primary types of streams are "ostream’ for output and “istream’ for input,
both being type-safe and capable of handling user-defined types. While
text-based 1/0O is covered, other forms like graphical 1/0O require additional

libraries outside the standard.

Output Operations

At its core, C++ provides output definitions for all built-in types using the
“ostream’ class. The << operator, known as the "put to" operator, enables
output operations, with “cout” as the standard output stream for general use
and “cerr” for error reporting. Complex output operations can be ssimplified
by chaining multiple "<<" operations together. Importantly, characters are

output as themselves, whereas numeric values can be represented in various

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

formats, depending on encoding.

#H# Input Operations

Conversaly, “istream’ enables input operations using the “>>" operator,
referred to asthe "get from" operator, with "cin” as the primary input stream.
Data types determine the kind of input accepted, allowing structured input
operations through chaining >>". While basic input terminates with any
non-data character, whitespace is ignored unless specified otherwise, with

functions like "getling()” providing additional control for reading entire lines.

1/O Stream States

Stream states inform users about the success of 1/O operations, crucial for
detecting errors or the end of input. Users can check stream states to handle
operations robustly, allowing them to manage potentially recoverable errors
through state-clearing functions. This mechanism supports sophisticated data

processing involving nested structures.

1/0 with User-Defined Types

Programmers can extend iostream capabilities to user-defined types by
creating custom operators for specific data representations. For instance, a
hypothetical "Entry” type used in atelephone book can have defined output
and input operators to manage string and numeric fields, ensuring robust

error checking and consistent formatting.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

#H# Formatting

The library provides manipulators to control input and output formatting,
such as defining how integers and floating-point numbers are represented.
Developers can utilize built-in manipulators for decimal, octal, and
hexadecimal formats, among others, and set precision to control the number
of displayed digits, crucial for aligning data presentation with user

expectations.

#H# File Streams and String Streams

File streams, including “ifstream’, "ofstream’, and “fstream’, facilitate
reading from, writing to, and both reading/writing to files, respectively.
Properly managing file states is essential for detecting issues like
inaccessible files. String streams (Cistringstream’, “ostringstream’, and
“stringstream’) offer similar functionality for in-memory strings, enabling
versatile data manipulation and formatting operations that integrate with
GUI systems.

#it# Practical Advice

The chapter ends with practical advice on using iostreams effectively,
emphasizing principles like type-safety, stream state management, and
leveraging manipulators for improved code readability and functionality.
Developers are reminded to ensure streams are properly opened before use

and to avoid directly copying file streamsto prevent errors.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Through understanding and utilizing these concepts, developers can manage
complex data I/O efficiently, extending default capabilities to custom types
and advanced use cases, always keeping in mind best practices for error

handling and process optimization.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 10 Summary: 9 Containers

Chapter 9: Containers Overview and Usage

Containers are fundamental in programming as they allow for the collection
and manipulation of multiple values. A container is essentially aclass
designed to hold objects, enabling efficient management and operations on
groups of data. Through a concise review, this chapter highlights the various
standard-library containers available, illustrating their implementation using

a simple phone book application.

9.1 Introduction to Containers

Containers help manage collections of data. For example, reading characters
into a string transforms these characters into a manageable group.
Standard-library containers come in handy when one needs to manage
objects, such as a basic phone book using the "Entry" class, which contains
names and phone numbers. Although this chapter ignores real-world
complexities like phone number formats, it provides strategies for efficiently

managing collections.

9.2 vector

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

The "vector is aversatile standard-library container, functioning as a
variable-size array that holds a sequence of elements of a given type. These
elements occupy contiguous memory, making access straightforward and
efficient viaindexing. Initialization is possible through direct value setting,
and vectors can be manipulated using functions like "push_back()", which
extends the vector by adding elements. Vectors dynamically manage their
size and memory allocations via copying, moving, and reserving space

through functions like “reserve()” and "capacity() .

However, vectors do not guarantee range checking during element access,
which can lead to errors. Therefore, using a "'Vec class, which extends the
vector and includes range-checking operations, is recommended. With this
mechanism, out-of-range access throws an exception that can be caught,

ensuring controlled error handling.

0.3 list

A ‘list” isadoubly-linked list suitable for situations requiring frequent
insertion and deletion of elements without the overhead of shifting other
elements. Lists operate efficiently when such modifications are frequent;

however, they differ from vectors as they are not indexable, relying instead

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

on iterators for element localization. Insertion and deletion are performed
using iterators, and despite their advantages in specific scenarios, lists can be
less efficient than vectors when dealing with simple traversals and searches,

especialy for smaller datasets.

9.4 map

A "map’ operates as a container of (key, value) pairs optimized for fast
lookup and retrieval. Internally implemented as ared-black tree, maps allow
simple association and management of data. A typical use caseis
substituting linear search with map lookup, which automates tedious code
tasks and enhances efficiency. The map supports indexing through keys,
automatically inserting default values if keys are undefined, and provides

lookup operations suited for ordered datasets.

9.5 unordered_map

“unordered_map’ isavariant of map using hash tables for even faster data
retrieval, optimized for unordered and large datasets. Hash functions enable
guick access, with hash collisions managed through chaining or open
addressing techniques. Users can customize hash functions, especially for

user-defined types, to ensure robust performance. Unordered maps are best

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

used when element order isimmaterial, focusing purely on lookup speed.

9.6 Container Overview

The standard library provides a broad spectrum of containers. "vector, list’,
“deque’, "set’, map’, unordered map’, and others. These containers are
designed for flexibility, ease of use, and efficient performance. While some,
like the “vector’, emphasize compact, contiguous data storage, others like
“list” prioritize ease of insertion/del etion without shifting. Differencesin
operations and performance characteristics guide users in selecting the most

suitable containers for their specific applications.

9.7 Advice

The chapter ends with practical advice on container usage:

- Default to “vector™ for general -purpose tasks and measure performance
when optimizing.

- Use "at()” over subscript operators for bounded access and error handling.
- Consider move semantics to boost performance by avoiding unnecessary
copying.

- For associative structures needing fast retrieval, prefer “unordered map” or

other hash-based containers; for ordered iteration, use ‘map .

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

- Thoroughly understand the capabilities, efficiencies, and trade-offs of each

container to make informed implementation choices.

By understanding these container principles, programmers can proficiently

manage data collections, ensuring application efficiency and robustness.

Section Description

Introduces containers as essential tools in programming for
managing multiple values. Utilizes a phone book application to
demonstrate the usage of standard-library containers.

9.1 Introduction
to Containers

Explains the use and functionality of "vector’ as a dynamic array.
Discusses initialization, manipulation, copying, moving, and memory
management. Highlights extension with a "Vec" class for
range-checking.

9.2 vector

Describes ‘list” as a doubly-linked list favorable for frequent
9.3 list insertions/deletions. Outlines advantages in specific use cases,
mentioning the reliance on iterators over indices.

Details ‘'map” as a key-value pair container optimized for fast
9.4 map associative data retrieval. Discusses internal implementation via
red-black trees and benefits in enhancing search efficiency.

Explains "unordered_map" as a hash table variant for accelerated
lookup speeds, suitable for large, unordered datasets. Highlights the
use of custom hash functions for performance tuning.

9.5
unordered_map

Provides an overview of various standard-library containers,

9.6 Container elucidating flexibility, storage efficiency, operational differences, and

Overview e
specific use cases.
Offers practical advice on container selection: default to "vector’, use
: “at()” for errors, employ move semantics to enhance performance,
9.7 Advice 0 ploy P

prefere “unordered_map" for fast retrieval, and understand container
characteristics thoroughly.

More Free Book

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 11 Summary: 10 Algorithms

Chapter 10: Algorithms

This chapter provides an overview of the crucial role algorithms play in the
manipulation and processing of data structures, like lists and vectors, found
in the C++ Standard Library. The focusison iterator usage, iterator types,

stream iterators, predicates, container algorithms, and more.

10.1 Introduction

Data structures such as lists and vectors become truly useful when combined
with operations like adding, removing, and manipulating their contents. In
practice, we seldom just store objects in these structures; typically, we
engage in sorting, printing, extracting subsets, and searching for objects. To
this end, the standard library includes built-in algorithms that enhance these
container types. For instance, you can efficiently sort avector of entries and
copy each unique element to alist, utilizing the sort and unique_copy
functions which rely on iterators (a generalization of pointers) to traverse
and manipulate these sequences. These operations minimize the need for

manual memory management.

10.2 Use of Iterators

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Iterators make it possible to access the elements in containers. Key examples
are "begin()” and "end()’, used to define sequences. Algorithms like “find
take these iterators to search through containers returning an iterator to the
desired element. Some iterators, such as input and output iterators, are
fundamentally different but serve similar purposes in their respective
contexts, like stream processing. For example, they allow seamless
integration with 1/O operations, treating streams as virtualy infinite

sequences of elements.
10.3 Iterator Types

Iterators vary widely across container types. For example, a vector iterator
might be a simple pointer, making it efficient for linear data structures. A list
iterator, however, needs to navigate linked nodes, hence the additional
complexity. Despite their differences, al iterators share common operations,
such that you can traverse and manipulate elements uniformly across

containers, facilitating generic programming.
10.4 Stream Iterators
Stream iterators extend the concept of iteratorsto |/O streams. The

“istream _iterator” and “ostream _iterator” treat streams as containers of input

and output respectively, allowing the use of standard algorithms with

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

streams in addition to regular containers. This can lead to compact programs
such as reading from files, sorting, and writing results to another file—all

while leveraging stream iterators for succinct and efficient 1/0O handling.
10.5 Predicates

Algorithms can be parameterized with predicates to perform more
generalized operations. A predicate, often supplied as a function object or a
lambda expression, allows an algorithm to determine its action based on
dynamic conditions. For instance, using ‘find if" combined with a predicate
hel ps search for elements meeting specific criteria beyond simple

equivalence.
10.6 Algorithm Overview

The C++ Standard Library provides ahost of algorithms encapsulated within
the "<algorithm>" header, catering to various needs like finding, counting,
modifying, and sorting elements—among others. These algorithms operate
on sequences defined by iterators, enhancing code reliability and
performance compared to manually crafted loops. Algorithms like “sort’,
“copy ', and ‘replace’ are integral for efficient and robust container

manipulation.

10.7 Container Algorithms

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

While algorithms generally operate on ranges defined by iterator pairs, such
as “sort(v.begin(), v.end())", container algorithms can be defined to simplify
thisto “sort(v) . By hiding the explicit iterator manipulation, container
algorithms can offer a cleaner, more intuitive interface while maintaining the

flexibility needed for more complex operations.

10.8 Advice

To fully utilize the capabilities of the C++ Standard Library:

1. Familiarize yourself with standard algorithms and prefer them over
custom loops. They are typically more efficient and tested for robustness.

2. Understand the type of iterators your containers use, as this can affect
performance and behavior.

3. Utilize predicates to extend the functionality and applicability of standard
agorithms,

4. Consider container-based algorithms to simplify your code when

managing sequences.

In essence, algorithmsin C++ offer a powerful suite of toolsfor data
manipulation, transcending the basic container functionalities, and fostering

clear, maintainable, and efficient code.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Algorithms offer efficient and concise ways to process
data.

Critical Interpretation: Incorporating the power of algorithms into your
life can inspire you to approach challenges with a mindset focused on
efficiency and clarity. By embracing the concept of breaking complex
tasks into smaller, manageabl e operations—similar to how algorithms
operate on data structures—Yyou can enhance your productivity and
problem-solving skills. Just like using 'sort' and 'unique_copy' to
handle data effectively, this approach encourages you to find the most
streamlined path to your goals, minimizing unnecessary steps and

optimizing your resources.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 12: 11 Utilities

Chapter 11: Utilities
I ntroduction

This chapter delves into the components of the C++ standard library that
aren't part of the easily recognizable categories like "containers' or "1/O."
Instead, it introduces smaller, but crucial, building blocks. These utilities,
whether functions or types, do not need to be overly complex to be
immensaly useful. They often form the foundation for more complex library

facilities.

Resour ce M anagement

In programming, especially in prolonged executions, managing resources
like memory, locks, sockets, threads, and file handlesis crucial to avoid
performance issues or crashes due to resource leaks. C++ standard library
components are designed to prevent these leaks using RAIIl (Resource
Acquisition Is Initialization). This approach ensures that a resource's

lifecycle istied to the object's lifecycle responsible for it. For instance, in

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

C++, the "unique _lock™ class automatically acquires and releases locks,

making resource management seamless even under exceptions.

Smart Pointers

To handle objects on the free store, C++ provides smart pointers:

1. "unique_ptr : Represents exclusive ownership of an object. It
automatically deletes the associated object when it goes out of scope.
2. “shared ptr': Represents shared ownership and deletes the object when the

last pointer goes out of scope.

The use of smart pointers minimizes risks of memory leaks, providing a
safer aternative to manual memory management. For instance, “shared ptr
offers aform of garbage collection by considering the scope of multiple

copies of a pointer.

Specialized Containers

The standard library provides specialized containers that serve diverse needs.

These include:

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

- "array . A fixed-size sequence of elements allocated contiguously.

- "bitset™: A container for managing sequences of bits, offering convenient
bit-level manipulation.

- "pair” and “tuple’: Allow storing heterogeneous data types. “pair” contains
two elements, while "tuple” can contain multiple. Both are useful when a

simple grouping of valuesis needed without defining a new struct.

Time Management

The C++ standard library includes facilities for handling time measurements,
found in the "std::chrono™ namespace. Y ou can use these tools to measure
execution durations and ensure you're basing performance claims on precise

data.

Function Adaptors

Function adaptors like "bind()” and ‘'mem_fn()" allow functionsto be
partially applied or treated as function objects. These adaptors facilitate
operations like currying (partial function application), although lambdas
often provide simpler alternatives for such patterns. “function’ isa utility
that allows storing callable entities, adding flexibility to callback

mechanisms and when passing functions around.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Type Functions

These functions evaluate properties or perform operations at compile-time,
aiding in tighter type checks and potentially enhancing performance.
Examplesinclude “iterator_traits and various type predicates like
“is_arithmetic’ to capture type characteristics. These utilities are crucial for

metaprogramming, supporting compile-time programming constructs.

Advice

The chapter rounds off with recommendations such as preferring modern
C++ constructs ("unique _ptr-, ‘shared ptr-, "array) over older techniques,
timing code for performance analysis, and favoring resource-specific
handles over generic smart pointers when possible. It also advises resorting
to type-specific functions and ensuring code efficiency through accurate

time measurements.

By incorporating and understanding these utilities, developers can

significantly strengthen their programming practices, ensuring robust,

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

efficient, and maintainable code. The chapter emphasizes leveraging the

subtle ‘building block’ features within C++ to construct sophisticated

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey k‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

Read, Share, Empower

Finish Your Reading Challenge, Donate Books to African Children.

The Concept

BOO
iy 9’

This book donation activity is rolling out together with Books For Africa.
We release this project because we share the same belief as BFA: For many
children in Africa, the gift of books truly is a gift of hope.

The Rule

Earn 100 points Redeem a book Donate to Africa

Your learning not only brings knowledge but also allows you to earn points for
charitable causes! For every 100 points you earn, a book will be donated to Africa.

A
Free Trial with Bookey~

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 13 Summary: 12 Numerics

Chapter 12 of the book is about "Numerics," focusing on the intersection of
C++ with numeric computation. Although C++ wasn't initially tailored for
numeric tasks, its efficiency in handling computations within larger systems
such as databases or simulations makes it a popular choice for scientific and
financial applications. The chapter elaborates on various facets of numerics

viathe standard library's support.
12.1 Introduction

C++’srole extends beyond basic numeric computation towards more
intricate tasks that often support broader systems. The chapter underscores
the utility of C++ in managing complex data structures integral to
sophisticated numerical methods.

12.2 Mathematical Functions

This section highlights the array of mathematical functions availablein C++,
covering fundamental operations like square root, sine, and exponential
functions, applicable to data types like float, double, and long double.
Complex versions of these functions exist, and error handling is facilitated
through the setting of error codes like EDOM and ERANGE.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

12.3 Numerical Algorithms

C++ offers a set of generalized numerical algorithms aiding in operations
such as summation and inner-product computation over sequences. These
algorithms, like "accumulate()” and “inner_product() ', provide aflexible

approach by permitting user-defined operators.

12.4 Complex Numbers

The C++ standard library supports complex number types through a
template class. It allows for operations anal ogous to those on ordinary
numerals, thereby facilitating calculations involving complex arithmetic.
The described template supports operations including arithmetic and

elementary math functions like sgrt() and pow().

12.5 Random Numbers

The need for random numbers spans various fields like gaming and
simulations. C++ handles random number generation with engines
generating sequences and distributions defining the value range. Examples
include "uniform_int_distribution™ and "normal_distribution™. A simpler
approach involves encapsul ating these complexities within a "Rand_int’

class to ssmplify usage for novices.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

12.6 Vector Arithmetic

While the standard vector classis highly versatile, it lacks mathematical
operation support. This limitation is addressed by the “valarray™ class
template, which is optimized for numeric computations. Operations such as
addition, multiplication, and division are directly supported for valarrays,

alongside functional strides for multidimensional calculations.
12.7 Numeric Limits

This section discusses classes that articulate built-in type properties, like the
maximum float exponent. These properties are crucial in determining a
type's adequacy for a given application. Assertions and "numeric_limits'
help confirm the suitability of numeric types in different computational

scenarios.
12.8 Advice

The author gives ten pieces of advice, emphasizing leveraging libraries for
numeric computations and understanding mathematical problem subtleties.
Optimized solutions like “accumulate()” are recommended over manual
loops, and employing “std::complex” is advised for complex arithmetic.
Random number generation should carefully balance randomness and

practicality, with "valarray preferred for performance-critical numeric

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

computations.

The chapter underscores the importance of merging C++’s robust
capabilities with specialized numeric methods to tackle complex
computational tasks efficiently, advising readers to employ existing

resources judiciously while considering mathematical intricacies.

Section Summary
12.1 Explains the role of C++ in complex systems and data structures for
Introduction sophisticated numerical tasks.
12.2 : - : .
: Details availability of fundamental math operations and error handling
Mathematical . .
Functions in C++ across various data types.

12.3 Numerical Describes generic numerical algorithms like "accumulate()” and

Algorithms ‘inner_product()” for flexible operations.

12.4 Complex Discusses support for complex numbers via template class for
Numbers arithmetic and math functions.

12.5 Random Highlights random number generation methods using engines and
Numbers distributions, including a "Rand_int" class for simplicity.

12.6 Vector Addresses limitations of standard vectors with “valarray™ for optimized
Arithmetic mathematical operations.

12.7 Numeric Discusses numeric limits and properties critical to determining

Limits adequacy for applications.

Offers ten advices on leveraging libraries, problem subtleties, and

12.8 Advice . o .
using built-in solutions over custom code.

More Free Book

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 14 Summary: 13 Concurrency

Chapter 13: Concurrency

H#HHHH# | ntroduction

Concurrency refers to the simultaneous execution of multiple tasks to
improve throughput or responsiveness in a program. Modern programming
languages, including C++, support concurrency through libraries that are
portable and type-safe, building on the decades-old capabilities of C++.
These libraries allow multiple threads to execute within a single address
space by providing a memory model and atomic operations for lock-free

programming.

#tHt Tasks and Threads

In C++, atask is any computation that can be executed concurrently with
others. It isrepresented at the system level by athread. Threads allow
functions or function objects to be executed in parallel, sharing asingle
address space, which facilitates communication through shared objects.
However, this can lead to dataraces if not handled properly. To avoid this,

threads can be joined to ensure their proper completion before proceeding.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

#HiH#H Passing Arguments

Concurrent tasks often require data to operate upon, which can be passed via
arguments to threads. When sharing data between tasks, references can
simplify the process but require careful synchronization to prevent
concurrent access violations. Non-const references are used when tasks are

expected to modify the data.
#H#H Returning Results

Tasks can return results through non-const references or by passing locations
where results are stored. Using dedicated functions to manage the data by
passing and returning locked sections minimizes concurrency-related issues,

though passing data through arguments can sometimes feel inelegant.
#HH# Sharing Data

When tasks need to share data, synchronization is essential. Mutexes
(mutual exclusion objects) help manage access to shared data, allowing only
one task to interact with the data at atime. The use of unique locks with
mutexes and avoiding deadlocks through strict lock acquisition are crucial.
While shared data can be seen as efficient, the overhead of locking and
unlocking often outweighs its benefits compared to modern data copying

techniques.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

#H#H Waiting for Events

Concurrency sometimes requires waiting for events like task completion or
time lapses. The standard library provides mechanisms such asthe sleep _for
function to manage time-related waits and condition variables for
inter-thread communication. These conditions allow threads to signal each

other in a controlled manner, preventing race conditions and deadl ocks.
#HH# Communicating Tasks

The C++ standard library offers higher-level abstractions like futures and
promises to manage inter-task communication. A futureis an object from
which task results are obtained, while apromiseis an object into which
results are set. Other structures, such as packaged_task and async(),
streamline task execution and communication by abstractly handling thread
creation and result management. These abstractions reduce the boilerplate
code associated with manual thread and lock management, leading to

simpler and safer concurrent programming.
#HH Advice

- Use concurrency to boost responsiveness and throughput.

- Prefer high-level abstractions and tools provided by the standard library.

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- Avoid directly managing threads and shared data unless necessary.

- Emphasize task-based thinking over direct thread manipulation.

- Utilize futures and promises to manage task results efficiently.

- Leverage async() for launching straightforward tasks that don't require

explicit thread management.

Understanding and employing these principles and tools can enhance the
safety and efficiency of concurrent programming in C++. Simple,
well-designed, and type-safe concurrency mechanisms help programmers

manage the complexity inherent in concurrent systems.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Leverage async() for launching straightforward tasks that
don't require explicit thread management.

Critical Interpretation: In the stream of your life, quite like
programming, events caper and unfold. Y ou navigate through
moments that seem to appear simultaneoudly, like the lines of a
parallel program. Thisisthe art of concurrency, where handling
multiple facets effectively contributes to a streamlined, responsive
symphony of your life's activities. By embracing tools like async() in
C++, you engage not just in programming wisdom, but in embodying
the savoir-faire of effortlessly balancing life's tasks. Just as async()
abstracts the cumbersome intricacies of thread management,
awareness and adaptability allow you to handle life's tasks with
elegance, enhancing productivity without engaging in unnecessary
complexity. So too, by employing high-level abstractions, you forge
paths toward achieving goals for both intricate projects or tasksin
your daily endeavors effectively, gracefully, and with minimal
friction. Inthis, you discover power in simplifying challenges, letting

you flow steadfast through the multifaceted threads of existence.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 15 Summary: 14 History and Compatibility

#H# Chapter 14: History and Compatibility

H#HHHH# | ntroduction

The phrase "Hurry Slowly" (festinalente) attributed to Octavius, Caesar
Augustus, emphasizes a core philosophy often applicable to software
development, including C++: move forward with caution and deliberation.
This chapter covers the history of C++, itsimpact on programming practices,
cross-compatibility with C, and highlights various language features

including those introduced in C++11.
#HH# 14.1 History

Development and Evolution of C++:

Bjarne Stroustrup, the inventor of C++, began developing the language in
1979 as " C with Classes' to address limitations in C, primarily for
event-driven simulations and systems programming. C++ introduced classes
and other featuresinspired by Simula, such as virtual functions, to provide

better abstraction, while maintaining C's efficiency.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

By 1984, features like virtual functions, operator overloading, and streams
were added, leading to the language's renaming to C++. Key texts such as
"The C++ Programming Language" and "The Annotated C++ Reference
Manual" documented these changes. C++ adopted several object-oriented
and generic programming features, as seen in the integration of templatesin

1988 and exception handling in 1990.

Standards and Milestones:

C++ evolved through cooperation among its community, including those at
AT&T Bell Laboratories. The |SO C++ standards, driven by user feedback
and rigorous committee work, were crucial in formalizing the language. The
1998 standard introduced namespaces and the STL, significantly enhancing
the language's usability and modularity.

C++11 represented a substantial update, nicknamed C++0x due to
anticipated timelines, adding features like lambda expressions, move
semantics, and concurrency support. The C++11 standard was finalized in

2011, formalizing many modern programming paradigms into the language.

H#HitHt 14.2 C++11 Extensions

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

L anguage Featur es;

C++11 brought numerous language updates, such as enhanced initialization
with {} "-lists, type deduction using "auto’, lambda expressions for
anonymous function definitions, rvalue references for move semantics, and
many others. These changes aimed to increase efficiency, improve

robustness, and accommodate more expressive coding styles.

Standard-Library Components:

The C++11 standard library expanded significantly with new components
like unordered containers, resource management pointers (e.g.,
“unigque_ptr’), concurrency utilities ("std::thread’, "std::mutex "), and regular
expressions. These provided more options to programmers for robust and

efficient application development.

Deprecated Features:

Some C++ features were deprecated, such as "auto_ptr’, classic exception

specifications, and certain C-style casts, to encourage safer, more modern

coding practices. The removal of seldom-used features aimed to streamline

Dlgrid

=
More Free Book R
Ot 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

the language while maintaining backward compatibility.
#H#H 14.3 C/C++ Compatibility

C++ ismostly asuperset of C, yet it introduces stricter type checking and
additional features that can lead to compatibility issues. This section
discusses potential pitfalls when converting C code to C++, such as
differencesin type casting rules, keyword conflicts, and handling of “extern

"C"" linkage to call C functions from C++ code.

Compatibility Problems:

Programmers might face compatibility challenges with the implicit
conversion of "void* " pointers, usage of deprecated or renamed keywords,
and linkage differences due to C++'s support for function overloading.
Recommendations include updating coding styles to leverage C++'stype

safety and modern features.
#i# 14.4 Bibliography and Further Reading
Extensive references are provided for those interested in the deeper technical

foundations and historical context of C++ development, from early works by

Bjarne Stroustrup to modern 1SO and technical reports.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

HHHt 14.5 Advice

Programmers are encouraged to embrace modern C++ features and
paradigms, such as using RAII for resource management, leveraging the
STL for routine operations, and cautiously adopting new language features.
The importance of updating old C practices to match new capabilitiesin

C++ isemphasized for improving code reliability and performance,

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

