

Climate Change PDF (Limited Copy)

Alan Moran

More Free Book

Scan to Download

Climate Change Summary

Understanding the Science and Solutions for a Warming Planet.

Written by Books1

More Free Book

Scan to Download

About the book

In "Climate Change," Alan Moran presents a thought-provoking examination of one of the most pressing issues of our time, challenging conventional narratives around climate policy, adaptation, and the socio-economic impacts of environmental changes. With a clear-eyed analysis that draws on scientific data, economic theory, and real-world examples, Moran invites readers to reconsider the effectiveness of global warming strategies and the role of human innovation in addressing environmental challenges. By dissecting the complexities of climate models and the often stark contrast between policy intentions and outcomes, this book encourages a critical reevaluation of our collective approach to sustainability. Whether you are a skeptic or a supporter of climate initiatives, Moran's insights promise to enrich your understanding and spur a deeper engagement with the future of our planet.

More Free Book

Scan to Download

About the author

Alan Moran is a distinguished economist and policy analyst with over three decades of experience in the fields of environmental and economic policy. As a former director of the Australian Office of Regulation Reform, his expertise extends to energy markets, climate change, and regulatory frameworks. Moran has contributed to various think tanks, including the Institute of Public Affairs, where he has advocated for market-oriented solutions to environmental issues. With a robust academic background and a keen focus on climate-related challenges, he brings a critical perspective to the intricate interplay between economic growth and environmental sustainability, making his insights particularly relevant in the ongoing discourse surrounding climate change.

More Free Book

Scan to Download

Try Bookey App to read 1000+ summary of world best books

Unlock 1000+ Titles, 80+ Topics

New titles added every week

Brand

Leadership & Collaboration

Time Management

Relationship & Communication

Business Strategy

Creativity

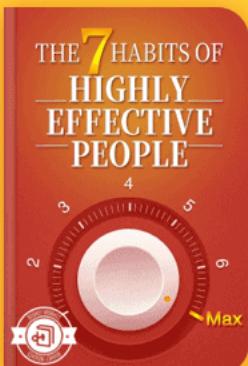
Public

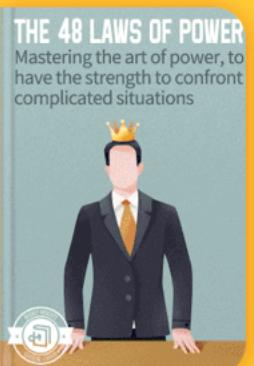
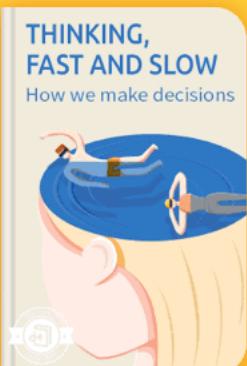
Money & Investing

Know Yourself

Positive P

Entrepreneurship





World History

Parent-Child Communication

Self-care

Mind & Sp

Insights of world best books

Free Trial with Bookey

Summary Content List

Chapter 1: 1 The science and politics of climate change

Chapter 2: 2 Why climate models are failing

Chapter 3: 3 Global warming, models and language

Chapter 4: 4 Sun shunned

Chapter 5: 5 The scientific context

Chapter 6: 6 Forecasting rain

Chapter 7: 7 Cool it: an essay on climate change

Chapter 8: 8 Costing climate change

Chapter 9: 9 Experts as ideologues

Chapter 10: 10 Uncertainty, scepticism and the climate issue

Chapter 11: 11 The trillion dollar guess and the zombie theory

Chapter 12: 12 Forecasting global climate change

Chapter 13: 13 The search for a global climate treaty

Chapter 14: 14 The hockey stick: a retrospective

Chapter 15: 15 The IPCC and the Peace Prize

Chapter 16: 16 Global warming's glorious ship of fools

More Free Book

Scan to Download

Chapter 17: 17 Cavemen, climate, and computers

Chapter 18: 18 The scientists and the apocalypse

Chapter 19: 19 The scientific method (and other heresies)

Chapter 20: 20 Extreme weather and global warming

Chapter 21: 21 False prophets unveiled

More Free Book

Scan to Download

Chapter 1 Summary: 1 The science and politics of climate change

The chapter "The Science and Politics of Climate Change" by Ian Plimer critically examines the framework of climate science, challenging the predominant theories surrounding human-induced global warming. Plimer begins by outlining the fundamental principles of scientific inquiry, emphasizing that science relies on repeatable evidence gathered through direct observation and experimentation. He asserts that scientific theories must evolve based on new evidence rather than through consensus or political ideology, arguing that the notion of human-caused climate change is flawed because it is built on predetermined conclusions.

Plimer identifies the primary claim of climate alarmists: that human activities, particularly fossil fuel emissions, are responsible for rising carbon dioxide (CO₂) levels, which in turn are leading to catastrophic climate change. He concedes that while CO₂ emissions have indeed increased due to industrialization in the developing world, this rise is beneficial for plant life, leading to what he describes as a "slight greening" of the planet. He argues that the correlation between rising atmospheric CO₂ and global temperature is tenuous at best. According to Plimer, historical data indicate that temperature increases often precede rises in CO₂ levels, suggesting causality runs the other way.

More Free Book

Scan to Download

The chapter dismisses the concept of climate tipping points, asserting that past atmospheric conditions with far higher CO₂ levels did not lead to runaway climate change. Instead, natural forces like ice sheet dynamics also influence sea levels, which can rise or fall due to several factors beyond anthropogenic emissions. Plimer stresses that historical and geological evidence displays a dynamic climate system where changes are natural and cyclical over millennia.

Extinctions, Plimer claims, are a normal aspect of evolutionary history, driven by diverse factors including climate but rarely attributable solely to it. Moreover, he points out that biodiversity often flourishes during warmer periods and diminishes in colder ones, contrasting recent fearful narratives about climate-induced extinctions.

Plimer challenges the concept of ocean acidification attributed to human CO₂ emissions, arguing that the oceans have maintained their alkalinity through natural buffering processes throughout geological history. This leads him to contest the notion that any current changes are unprecedented or alarming.

In wrapping up, Plimer critiques the politicization of climate science, noting that funding for climate research tends to favor projects that align with government ideologies while marginalizing alternative perspectives. He stresses that the belief in the urgency for a shift to renewable energy sources

More Free Book

Scan to Download

often overlooks both their inefficiency and their potential negative impacts on the environment.

Ultimately, Plimer characterizes climate change catastrophism as a sociopolitical movement rather than sound science, warning that excessive regulatory measures and the transition to alternative energy sources may harm the economy and the most vulnerable populations. He concludes that genuine climate adaptation strategies should prioritize economic growth and sustainability rather than succumbing to ideological pressures.

More Free Book

Scan to Download

Critical Thinking

Key Point: Scientific theories should evolve based on new evidence rather than political consensus.

Critical Interpretation: Imagine embarking on your own journey of discovery, where you embrace the idea that your beliefs and decisions should be grounded in what you observe and learn, not just what others tell you or what seems popular at the moment. This chapter inspires you to challenge information critically, encouraging a mindset of seeking out truths in your own experiences and observations. By not succumbing to groupthink, you become empowered to make informed choices, advocate for sustainable practices in your community, and contribute to a balanced discourse on important issues, ensuring that your actions reflect genuine understanding and not just the prevailing narrative.

More Free Book

Scan to Download

Chapter 2 Summary: 2 Why climate models are failing

Chapter 2: Why Climate Models Are Failing

In this chapter, Patrick J. Michaels discusses the political fallout from ineffective greenhouse gas emission policies in Australia, the United States, and Canada, suggesting that such policies have led to significant losses for political leaders and parties. Notable examples include the ousting of Australian Prime Ministers Malcolm Turnbull, Kevin Rudd, and Julia Gillard, who all faced backlash for their climate policies. Similarly, the Democratic Party in the U.S. suffered congressional losses linked to cap-and-trade votes, while Canada's new leadership has shunned substantial climate initiatives.

Michaels opens the chapter by critiquing the validity of climate models, arguing that many of them operate more as untestable theories than as sound science. He emphasizes Karl Popper's criterion for science—hypotheses must be testable against observations. The discussion highlights a troubling trend: the climate models primarily predict dire consequences of climate change based on assumptions of increased greenhouse gas levels, yet these models often lack rigorous validation against real-world data, which he refers to as "climate studies" rather than true "climate science."

More Free Book

Scan to Download

A key aspect of climate modeling is the reliance on general circulation climate models (GCMs) which simulate the Earth's climate and forecast temperature changes based on two main alterations in the atmosphere: increased infrared absorption from greenhouse gases like CO₂, and altered radiation effects from aerosols. However, Michaels points out a significant gap in the research: the majority of models fail to adequately account for the actual temperature trends observed in data, particularly with regard to what has been termed "the pause" in global warming—an observational trend that has shown no statistically significant increase over 18 consecutive years.

Michaels presents a rigorous analysis comparing observed trends in global temperatures against modeled projections from the Intergovernmental Panel on Climate Change (IPCC). The results are stark: observations consistently fall below the model averages, indicating that the models tend to overestimate warming. The average climate model predicts a warming rate of 2.6°C per century, while actual observations only suggest a rate of 1.7°C, casting doubt on the credibility of the predictive models that underpin current climate policies.

The chapter delves into the scientific methods used to critique these models, including an examination of historical temperature data and statistical techniques to evaluate model performance. Michaels notes that this analysis has been largely overlooked in mainstream climate science discourse, primarily due to a reluctance within the scientific community to abandon

More Free Book

Scan to Download

prevailing paradigms. He cites philosopher Thomas Kuhn, whose work on scientific revolutions illustrates how entrenched beliefs often resist change, even in the face of contradicting evidence.

A growing body of literature suggests that climate sensitivity—the degree of warming expected for a doubling of CO₂ levels—may be much lower than previously assumed by many GCMs. This emerging evidence indicates that earlier projections of extreme climate change may be exaggerated due to high sensitivity assumptions. Several studies emphasize revised models showing a climate sensitivity closer to 1.5°C to 2.3°C, significantly below the 3.2°C average from the IPCC's 2013 report.

Michaels concludes by asserting the urgent need to acknowledge the failures of climate models and the resulting implications for climate policies. He contemplates the political and societal consequences of continuing down a path informed by these flawed models, especially in light of recent changes in government and public sentiment regarding climate-related regulations. The chapter serves as a call to rethink current approaches to climate science and policy based on more robust and empirically supported findings.

More Free Book

Scan to Download

Critical Thinking

Key Point: The critique of climate models and their implications for policy-making

Critical Interpretation: Imagine standing at a crossroads, where the traditional path leads to policies that may be built upon shaky foundations, representing climate models that have repeatedly failed to match reality. Instead, consider the empowerment that comes from critically examining the information we receive about climate change. Embracing the understanding that many models may overestimate warming inspires you to seek out reliable, evidence-based solutions that can lead to more effective climate action. By advocating for policies grounded in rigorous science rather than unverified assumptions, you not only contribute to a healthier planet but also inspire others to engage in thoughtful discussions about climate solutions, encouraging a shift towards a more informed and rational approach to environmental stewardship.

More Free Book

Scan to Download

Chapter 3 Summary: 3 Global warming, models and language

Chapter 3: Global Warming, Models, and Language

In this chapter, Richard S. Lindzen explores the intersection of global warming discourse, scientific modeling, and language. He asserts that the conversation surrounding climate change is more rooted in politics and the manipulation of language than in objective science, echoing George Orwell's concerns about the deterioration of language leading to unclear thought.

Lindzen argues that climate advocates utilize climate models not to predict future outcomes but to bolster the narrative of potential catastrophic consequences of global warming. He highlights a critical misunderstanding in discussions—most questions framed as "yes-no" fail to address the complexity of climate change. For instance, while it can be confirmed that carbon dioxide (CO₂) is a greenhouse gas, this does not inherently support a narrative of imminent disaster; the nuanced question is "How much impact does it have?"

The chapter pivots to the concept of **climate sensitivity**, defined as the temperature response to a doubling of atmospheric CO₂. Lindzen explains that estimates of this sensitivity vary significantly, often with a tendency

More Free Book

Scan to Download

towards high values in models, despite evidence suggesting a more modest sensitivity. He critiques the reliance on temperature records to establish climate sensitivity, noting that such records indicate lower sensitivity than climate models suggest. This is compounded by the so-called precautionary principle that encourages action against potentially catastrophic outcomes, irrespective of their likelihood.

To analyze the response of global temperatures to various forces—such as human greenhouse gas emissions and volcanic activity—Lindzen employs energy balance models. He discusses how the surface temperature changes relate to the energy flow caused by greenhouse gases and how high sensitivity is typically associated with prolonged response times. By examining historical temperature changes and their connection to volcanic activity, he demonstrates how data suggests that observed warming aligns with low climate sensitivity.

Lindzen also introduces the concept of **natural internal variability**—the idea that changes in global temperatures can occur due to oceanic and climatic patterns without external forcing, like human activity. This variability can complicate interpretations of climate data, particularly when attributing changes in temperature solely to human actions.

The narrative proceeds to challenge alarmist claims regarding extreme weather events. Lindzen argues that the connection between global warming

More Free Book

Scan to Download

and extreme weather lacks robust empirical support, calling attention to established meteorological concepts that suggest a warmer planet may actually lead to fewer extremes outside the tropics. For instance, he references how increased temperatures may reduce the temperature differential that drives certain weather patterns, potentially leading to a decrease in severe weather incidents.

In a historical context, Lindzen critiques Al Gore's portrayal of CO₂ as a primary driver of climate change, referencing the work of Milutin Milankovitch, who posited that changes in Earth's orbit have substantial effects on glaciation cycles, overshadowing the influence of CO₂ fluctuations. By examining the relative impacts of natural versus anthropogenic factors, Lindzen posits that the conventional understanding of climate dynamics—centered around averaged global temperatures and radiative imbalances—is insufficient to explain the complexity of climate variability experienced over millennia.

In conclusion, Lindzen argues that the climate's response to increasing greenhouse gas concentrations is likely minimal, contending that a slight warming trend could even yield net benefits. He expresses concern about the scientific community's complicity in alarmist narratives and the erosion of rigorous scientific discourse surrounding climate change. Thus, he invites readers to reconsider the assumptions underpinning climate models and the rhetoric used in climate debates, advocating for a clearer, more honest

More Free Book

Scan to Download

engagement with climate science.

More Free Book

Scan to Download

Chapter 4: 4 Sun shunned

Summary of Chapter 4: Sun Shunned

Chapter 4 delves into the historical and scientific perspectives surrounding solar activity and its influence on Earth's climate, emphasizing the controversial stance of the Intergovernmental Panel on Climate Change (IPCC) regarding the role of the sun in climate change.

The narrative begins with a historical nod to the contributions of scientist Edward Maunder, who spotlighted the 'Maunder Minimum,' a period from 1645 to 1715 marked by a significant reduction in sunspots, indicating reduced solar activity. This observation was largely overlooked or misinterpreted until Jack Eddy's work in the late 20th century validated it, revealing that such solar inactivity has recurred numerous times over the last 7,000 years. This backdrop sets the stage for the discussion on how current understanding of solar variability can influence future climate predictions.

The author asserts that the extensive reports produced by the IPCC, meant to assess human-induced climate change, reflect the opinions of a small group of scientists who maintain—despite evidence to the contrary—that human actions are the primary drivers of climate change. He critiques the IPCC for claiming consensus in its findings, a notion he argues undermines true

More Free Book

Scan to Download

scientific inquiry and alludes to a bias against acknowledging solar influences on climate.

The chapter critiques the IPCC's treatment of solar data, highlighting specific scientific inaccuracies and omissions:

- 1. Radiative Forcing Misunderstandings:** The IPCC's simplified models overlook the complexities of how Earth's orbit affects solar energy distribution.
- 2. Measurement Uncertainties:** There exists significant uncertainty in total solar irradiance measurements, raising doubts about the reliability of climate signals attributed to rising CO₂ levels.
- 3. Data Biases:** Important datasets that could provide clarity have been ignored, leading to incomplete conclusions about solar influences on climate dynamics.
- 4. Critique of Solar Studies:** The author points out that many relevant studies, especially those by researchers like Willie Soon and David Legates, have been overlooked, often because they do not align with the prevailing narrative.

The chapter emphasizes the necessity for accurate models in understanding climate influences, particularly the seasonal variations in solar output. It argues that the IPCC's reliance on flawed and outdated data has skewed the representation of scientific consensus regarding climate influences, underlining that the sun's energy levels can vary dramatically and should be

More Free Book

Scan to Download

factored into climate models.

Key findings are contrasted against IPCC assertions, with the author citing historical climate records where solar activity correlates with climatic conditions, such as during the Eemian interglacial period. He points out

Install Bookey App to Unlock Full Text and Audio

[Free Trial with Bookey](#)

Why Bookey is must have App for Book Lovers

30min Content

The deeper and clearer interpretation we provide, the better grasp of each title you have.

Text and Audio format

Absorb knowledge even in fragmented time.

Quiz

Check whether you have mastered what you just learned.

And more

Multiple Voices & fonts, Mind Map, Quotes, IdeaClips...

Free Trial with Bookey

Chapter 5 Summary: 5 The scientific context

Chapter 5: The Scientific Context

Author: Robert M. Carter

In this chapter, Robert M. Carter explores the science surrounding global warming, emphasizing the duality of its simplicity and complexity. He highlights that while fundamental climate principles are accessible in introductory earth science courses, the intricate processes of climate change often remain poorly understood. So, to make sense of global warming, speculative computer models are frequently employed.

Carter notes a divide in scientific perspectives: proponents of a human-caused climate crisis (often aligned with the Intergovernmental Panel on Climate Change, or IPCC) stress the complexities that necessitate expert input. In contrast, independent scientists (aligned with the Nongovernmental International Panel on Climate Change, or NIPCC) prioritize broader contextual facts that cast doubt on the alleged dangers of human impact on climate.

The chapter outlines four crucial scientific contexts that inform the global

More Free Book

Scan to Download

warming debate:

1. Error Boundaries in Temperature Recordings The IPCC relies on the HadCRUT temperature record, which averages data that is often of variable quality. Carter critiques this methodology, revealing significant uncertainties tied to urban heat island effects and inherent measurement flaws. He argues that these errors—sometimes exceeding the purported $\sim 0.7^{\circ}\text{C}$ warming—cast serious doubt on claims of statistically significant modern warming.

2. Natural Temperature Variability through Geological Time Carter elucidates the long-standing fluctuations in the Earth's climate as evidenced by geological records, contrasting these data points with short-term thermometer readings. Analysis indicates that temperatures were often warmer during historical epochs such as the Holocene Climatic Optimum than in the late twentieth century, challenging the narrative of unparalleled modern warming.

3. Historical CO₂ Levels: Contrary to popular belief that current carbon dioxide levels are unprecedentedly high and dangerous, Carter asserts that these levels are relatively low compared to geological history. He explains that plants have evolved to thrive in much higher CO₂ concentrations, which historically have played a significant role in promoting biodiversity and agricultural productivity.

More Free Book

Scan to Download

4. Efficacy of CO2-Induced Warming: While carbon dioxide does contribute to the greenhouse effect, Carter discusses the diminishing returns of its impact as concentrations rise due to a logarithmic relationship. He indicates that future temperature rises from doubled CO2 concentrations may yield modest warming, and challenges the IPCC's projections of severe warming, which rely on speculative feedback mechanisms.

Carter points out that despite the urgency expressed by global warming advocates, there is substantial agreement among scientists on several foundational concepts: climate is always changing, CO2 contributes to warming, human activity has added CO2 to the atmosphere, and observed warming may have plateaued in recent years.

He critiques the IPCC's role, characterizing it as a political rather than purely scientific body. The organization's mandate limits its climate focus to human-caused warming, ignoring broader climate dynamics. Environmental movements, fueled by influential NGOs and media, continue to propagate fears of global warming, often overshadowing balanced scientific discourse.

Carter asserts that this alarmism has shaped public sentiment and policy against CO2 emissions without convincing empirical evidence of significant human-caused warming. He argues that a more rational approach involves preparing for the natural variability of climate rather than enacting costly

More Free Book

Scan to Download

measures to reduce CO2 emissions based on speculative science.

Ultimately, Carter concludes that nations should prioritize adaptive responses to climate hazards—natural climate events and variability—rather than focusing solely on human-induced warming. He advocates for policies based on openness to both warming and cooling scenarios, urging readiness to address the variety of climate-related challenges that lie ahead.

More Free Book

Scan to Download

Chapter 6 Summary: 6 Forecasting rain

Chapter 6: Forecasting Rain

In the quest for scientific advancement, the utility of a theory often determines its acceptance. Historical examples, like the transition from Ptolemaic to Copernican models of the cosmos, illustrate how theories with practical applications, such as more accurate calendars for navigation and weather forecasting, gained traction despite initial resistance due to their political and religious implications. Conversely, the current prominence of anthropogenic global warming (AGW) theory, while lacking significant practical utility, aligns with contemporary societal sentiments about environmental degradation and reinforces a call for political action based on a supposed scientific consensus.

The process by which scientific ideas are displaced often resembles a competition rather than a logical argument, as noted by historian Thomas Kuhn. Established theories typically evolve slowly rather than being outright rejected, until a new paradigm emerges that captures attention and provides a fresh perspective.

In the realm of Australian meteorology, prior to the establishment of the Bureau of Meteorology in 1909, forecasters relied on longstanding

More Free Book

Scan to Download

astronomical insights to predict weather patterns. However, by the mid-20th century, the focus shifted towards modeling Earth's climate using General Circulation Models (GCMs), emphasizing oceanic and atmospheric processes while discounting extraterrestrial influences, like solar and lunar cycles. By the 1980s, scientists increasingly relied on these computer models, gaining confidence in predicting the effects of rising atmospheric carbon dioxide levels on climate.

Despite these advancements, evidence suggests that the skill of medium and long-range weather forecasting has not improved—in fact, it may be declining. For instance, Professor Chris Turney's ill-fated Antarctic expedition in 2013 highlighted the limitations of GCMs when his ship became trapped in ice due to unpredicted weather patterns. In contrast, long-range forecasters like Kevin Long, who analyze historical data and natural cycles, have achieved remarkable accuracy, demonstrating that they can predict rainfall levels better than models employed by established institutions, despite lacking government support.

The Australian Bureau of Meteorology's forecasts stem from the Predictive Ocean Atmosphere Model for Australia (POAMA), which fails to accurately replicate historical rainfall trends. The reliance on these models has even led to the dismissal of older statistical methods. Yet peer-reviewed literature shows that simpler statistical models outperform GCMs like POAMA. This raises concerns about the reliance on aggregated model outputs, which

More Free Book

Scan to Download

obscure significant divergences between individual forecasts from multiple GCMs, leading to generalized predictions that lack credibility.

In the discussion surrounding weather forecasting methodologies, figures like Ken Ring, who utilizes lunar influences in his predictions, often face skepticism yet attract a following among farmers who find value in his almanacs. The broader scientific community ironically overlooks the influence of natural phenomena on weather patterns, relying heavily on computer models that often yield unsatisfactory results.

Climate cycles, as discussed by Professor Robert M. Carter, have their origins in geological processes spanning thousands of years, affecting Earth's climate patterns far beyond the short instrumental record that the Intergovernmental Panel on Climate Change (IPCC) tends to focus on. These cycles include variations influenced by solar activity and other celestial phenomena.

In contrasting forecasting methods, the utility of Artificial Neural Networks (ANNs), which derive understanding from historical climatic data and patterns, emerges as a promising alternative to GCMs. Despite skepticism from mainstream climate science about the relevance of statistical models, ANNs have demonstrated superior forecasting capabilities.

The past few decades of funding models have reinforced a cycle where

More Free Book

Scan to Download

scientists must advocate for specific problems to secure future research resources, leading to the prioritization of virtual models over observational data. This shift has inadvertently enabled a climate science narrative that often emphasizes authority over inquiry.

Moving forward, there is a compelling case for philanthropic backing of alternative research that could challenge established models of climate understanding. The call for new methodologies, such as the implementation of ANNs for improved climate models, holds potential to revolutionize weather prediction and environmental science.

To shift away from the limitations of AGW theory, the scientific community must embrace alternative perspectives and foster an environment conducive to diverse approaches, paving the way for greater understanding of natural climate cycles, and ultimately resulting in more accurate, reliable weather forecasting that benefits society.

More Free Book

Scan to Download

Chapter 7 Summary: 7 Cool it: an essay on climate change

In Chapter 7 of Nigel Lawson's essay "Cool it," the author critiques the prominent climate change alarmism that has dominated public discourse, especially following a period where global warming has stagnated. Lawson opens by expressing his personal experiences of hostility as a dissenting voice on climate change, highlighting that questioning widely accepted climate policies has led to intense vilification—often equating dissent with denial of historical atrocities, thereby stifling rational discussion.

Lawson outlines his background, noting his extensive involvement in climate discourse, including authoring a bestseller on the subject and founding the Global Warming Policy Foundation. Despite his contributions, he notes a reluctance from mainstream media and politicians to engage with or acknowledge dissenting views, which he argues prevents constructive debate on what he perceives to be misconceptions in climate science and policy.

The central tenet of Lawson's argument is that while the greenhouse effect is a scientifically accepted phenomenon, the degree and implications of warming stipulated by alarmists remain uncertain. He poses critical questions regarding climate sensitivity—the degree to which increases in carbon dioxide would lead to rising global temperatures—and points out that

More Free Book

Scan to Download

historical climate variations occurred long before industrialization. He notes that while data indicates a rise in global temperatures, predictions of continued warming have not materialized, particularly in light of a notable hiatus in temperature increase over the past decade.

Lawson suggests that, contrary to alarmist claims, a moderate rise in temperatures could yield both benefits and drawbacks, with overall effects potentially being positive, especially concerning human health and food production. He argues that while climate change policy often overlooks the immediate issue of poverty—arguably the most pressing challenge facing humanity—efforts focusing on economic growth and adapting to climate changes should take precedence over costly decarbonization agendas.

The essay critically examines the alarmist rhetoric presented in major climate reports, such as the IPCC's findings, which Lawson asserts fail to sufficiently justify their alarming recommendations and often misinterpret the relationship between climate change and health risks. He instead advocates for adaptation strategies over drastic measures to curb fossil fuel use, contending that the economic consequences of such policies would ultimately harm the most vulnerable populations, particularly in developing countries.

In a broader cultural critique, Lawson characterizes the climate change movement as a quasi-religious ideology that substitutes for traditional belief

More Free Book

Scan to Download

systems. He observes that the fervor surrounding climate alarmism often disregards rational debate and leads to policies that disproportionately burden the poor while having minimal impact on the wealthy. He warns against the moral implications of depriving future generations of the prosperity and advancements they are likely to achieve due to current climate policies.

In conclusion, Lawson labels the current climate change orthodoxy as not only irrational but fundamentally wicked, particularly for its detrimental effects on the developing world, urging instead for a focus on pragmatic solutions that consider economic realities and human welfare.

More Free Book

Scan to Download

Chapter 8: 8 Costing climate change

Chapter 8: Costing Climate Change

In this chapter, Alan Moran discusses the findings of the Intergovernmental Panel on Climate Change (IPCC) regarding the economic implications of climate change, as articulated in its Fifth Assessment Reports published between 2013 and 2014. The IPCC, a body of scientists, estimated that doubling atmospheric carbon dioxide (CO₂) could lead to global warming between 1.5°C and 4.5°C—a range adjusted downward in response to previous discrepancies between climate model predictions and actual warming trends. Some climate scientists, such as Richard Lindzen, propose that the upper limit of warming from human-induced greenhouse gases could be as low as 1°C.

Moran highlights the juxtaposition between public calls from celebrities to reduce non-renewable energy consumption, often overshadowed by their significant carbon footprints, and the substantive questions surrounding the projected costs of climate change. The IPCC outlines grim forecasts for each degree of warming, predicting dire consequences for water resources, food security, ecosystem health, and urban infrastructure. These projections suggest a rise in drought frequency, intense rainfall, and uncertainties surrounding crop yields and fisheries.

More Free Book

Scan to Download

The IPCC also enumerates significant risks, including sea-level rise impacts on coastal populations, the economic effects of extreme weather events, and the potential loss of biodiversity. Estimates from renowned studies, like those by Nicholas Stern and Ross Garnaut, reveal a stark contrast in projected costs: Stern suggests climate change could cost around 20% of GDP if no action is taken, whereas Garnaut's projections align with delayed future costs primarily impacting the 22nd and 23rd centuries. However, both reports have faced scrutiny for their lack of peer review and reliance on questionable assumptions regarding future climate impacts.

Moran critiques these financial assessments, particularly those around agricultural productivity and other sectors. He emphasizes that IPCC's economic models may overestimate damages because they adopt a static view—assuming no adaptive actions will be taken in response to climate changes. Moran critiques specific alarming claims made by the IPCC about regions like Australia's Murray-Darling Basin as politically charged rather than scientifically substantiated.

Turning to mitigation costs, Moran notes the IPCC's Working Group III analysis, which quantifies the financial burden of reducing greenhouse gas emissions through various taxes and regulatory measures. Estimates indicate that achieving lower emissions targets could impose significant cumulative costs on global income, but Moran argues these projections fail to consider

More Free Book

Scan to Download

the unpredictable nature of future energy technologies and economic reactions.

He alludes to the political and social realities of imposing such emissions reductions, underscoring the hesitance from both developed and developing

Install Bookey App to Unlock Full Text and Audio

Free Trial with Bookey

5 ★★★★★
22k 5 star review

Positive feedback

Sara Scholz

tes after each book summary
erstanding but also make the
and engaging. Bookey has
ding for me.

Masood El Toure

Fantastic!!!

5 ★★★★★

I'm amazed by the variety of books and languages
Bookey supports. It's not just an app, it's a gateway
to global knowledge. Plus, earning points for charity
is a big plus!

José Botín

ding habit
o's design
ual growth

Love it!

5 ★★★★★

Bookey offers me time to go through the
important parts of a book. It also gives me enough
idea whether or not I should purchase the whole
book version or not! It is easy to use!

Wonnie Tappkx

Time saver!

5 ★★★★★

Bookey is my go-to app for
summaries are concise, ins-
curred. It's like having acc-
right at my fingertips!

Awesome app!

5 ★★★★★

I love audiobooks but don't always have time to listen
to the entire book! bookey allows me to get a summary
of the highlights of the book I'm interested in!!! What a
great concept !!!highly recommended!

Rahul Malviya

Beautiful App

5 ★★★★★

This app is a lifesaver for book lovers with
busy schedules. The summaries are spot
on, and the mind maps help reinforce what
I've learned. Highly recommend!

Alex Walk

Free Trial with Bookey

Chapter 9 Summary: 9 Experts as ideologues

Chapter 9: Experts as Ideologues

In this chapter, James Delingpole critiques the disconnect between academia and the public understanding of climate science, as exemplified by his experiences in discussions with well-educated individuals who often express skepticism about the literacy of scientists. On a few occasions, he tested this literacy by asking attendees to describe the Second Law of Thermodynamics, receiving blank stares in response—a remark that underscores a broader trend of scientific illiteracy among the educated elite.

Delingpole candidly reveals his own lack of scientific qualifications compared to his educational background in English Language and Literature from Oxford, which is ironically viewed by many as a mark of intellectual deficiency in the arena of climate science. He lists prominent figures in the environmental movement, such as Roger Harrabin and Caroline Lucas, highlighting their similar backgrounds and questioning the validity and authority of their proclamations about climate science based purely on their degrees in the humanities.

He contends that, despite their qualifications, these figures often fail to contribute meaningfully to the climate debate. Instead, they rely on the

More Free Book

Scan to Download

perceived scientific consensus and the authority of institutions like the Intergovernmental Panel on Climate Change (IPCC), ignoring the mounting evidence that challenges the established narrative of anthropogenic global warming.

Delingpole argues that this environment has become so ideologically driven that genuine scientific dissenters, such as Bob Carter and Roger Pielke Jr., are marginalized or attacked rather than engaged with on the merits of their ideas. He cites their experiences with personal smear campaigns and attacks on credibility, illustrating how dissenting voices are silenced through a combination of scientific dogmatism and political activism masquerading as science.

He uses the case of climate scientist Lennart Bengtsson to further emphasize the bullying and intimidation tactics employed against those who shift their views away from the consensus. Bengtsson's resignation after joining a skeptical think tank reflects a broader climate of fear that stifles open debate and genuine inquiry in the field of climate science.

Delingpole highlights that this ideological battle surrounding climate change is often framed incorrectly. Many believe it should be viewed solely as a scientific issue, but he posits that it is deeply entwined with ideology, requiring a more nuanced understanding than what is typically offered in mainstream discourse.

More Free Book

Scan to Download

He critiques the reverence given to scientists and the flawed notion that their authority guarantees truth. This attitude is reminiscent of the 1959 lecture by C.P. Snow, which romanticized the scientific community, ignoring its imperfections and biases. Delingpole stresses that science is not infallible, and its theories must be continually tested and challenged to remain valid.

Towards the end, he argues that an overemphasis on the supposed consensus can lead to a dangerous political activism effect, where the objective pursuit of truth is sacrificed for ideological conformity. He urges that true science must welcome dissent and adapt to new evidence, as demonstrated by historical paradigm shifts in scientific thinking.

In conclusion, Delingpole suggests that the continuing defense of the flawed theory of anthropogenic global warming reflects a broader crisis within climate science, which, rather than being an objective inquiry into our environment, has devolved into a politically charged arena marked by propaganda, intimidation, and ideological purity.

More Free Book

Scan to Download

Chapter 10 Summary: 10 Uncertainty, scepticism and the climate issue

In Chapter 10, titled "Uncertainty, Scepticism and the Climate Issue," authored by Garth W. Paltridge, the discussion opens with historical context, tracing the beginnings of climate science back to the early 1970s. At this time, the World Meteorological Organization initiated the World Climate Program, convening a workshop in Stockholm to identify core scientific challenges that hinder accurate climate forecasting. The workshop highlighted two primary issues: the difficulty in simulating cloud behavior and the challenges in forecasting ocean dynamics.

Clouds play a crucial role in regulating the Earth's temperature by balancing solar heating and infrared cooling, while oceans serve as major heat reservoirs. Both elements present substantial challenges to climate models, which rely on numerical simulations conducted on a grid system. The grid's limitations—particularly the large distances between data points—complicate the accurate modeling of cloud formations and oceanic fluctuations. These challenges mean that even small errors in modeling can accumulate and distort long-term forecasts.

Paltridge dives into one of the enigmatic aspects of climate change: despite scientists' recognition of the uncertainties prevalent in climate modeling, some, particularly those involved with the Intergovernmental Panel on

More Free Book

Scan to Download

Climate Change (IPCC), assert a 95% probability that human-induced carbon dioxide emissions are primarily responsible for recent global warming. This confidence starkly contrasts with the scientific community's more cautious internal assessments.

Central to the discourse is the amplification of warming predictions attributed to clouds within models, which, on average, increase the projected rise in temperature significantly. This raises critical questions regarding the reliability of these projections and whether they are indeed reflective of future climatic conditions. Additionally, Paltridge highlights the dangers of attributing the entirety of recent warming to carbon emissions without accounting for natural internal oceanic fluctuations that could also play significant roles.

The chapter examines a perceived trap in climate science, one fueled by the environmental movement's push to address global warming, which resulted in a heavy reliance on external funding sources for scientists. This dependency has potentially distorted scientific integrity, encouraging advocacy that may exaggerate the urgency of climate change and downplay uncertainties. Major scientific organizations, such as the Royal Society and the National Academy of Sciences, further entrenched these views by endorsing IPCC conclusions, which limited open discussion about uncertainties and skepticism within the scientific community.

More Free Book

Scan to Download

Paltridge argues that this shift has fostered an environment where skepticism, traditionally the lifeblood of scientific inquiry, has diminished. Scientists are often reluctant to voice dissenting opinions that may jeopardize their careers or contradict established political narratives surrounding climate change. The risk of being marginalized or professionally ostracized for questioning prevailing theories has fortified an echo chamber around the accepted climate discourse.

The author proceeds to characterize the state of climate research as “post-normal science,” where uncertainty in facts, competing values, and high stakes complicate the decision-making process. With data on past climates being notably inaccurate, there arises a greater tendency for scientists to selectively interpret information based on prevailing theories. Moreover, the rise of computer modeling, while advantageous, has perpetuated a cycle of tuning models to achieve desired results, often blurring the lines between observation and theory.

Paltridge warns about the encroachment of postmodern science, where scientific results may be shaped to fit political ideologies, rather than being derived from objective investigation. He points to scandals such as the Climategate incident in 2009, where leaks revealed unethical practices among leading climate scientists who seemed complicit in data manipulation and curtailing dissent, thus undermining the credibility of climate research.

More Free Book

Scan to Download

Despite the complexities of the debate, Paltridge emphasizes the contributions of climate sceptics, who bring critical analysis and alternative views to public discourse. Notable sceptics like Judith Curry and Steve McIntyre illustrate how independent thinkers can challenge mainstream narratives, yet they often face barriers to publication in major scientific journals due to the prevailing climate consensus.

In conclusion, Paltridge calls for a return to rigorous skepticism and open dialogue in scientific inquiry, particularly in climate science. With significant uncertainties surrounding climate predictions, he posits that there remains substantial room for cautious optimism regarding the impacts of global warming. The overarching message underscores the need for scientists to balance advocacy with rigorous skepticism to preserve the integrity of scientific inquiry and the trust that society places in it.

More Free Book

Scan to Download

Critical Thinking

Key Point: The need for rigorous skepticism in scientific inquiry

Critical Interpretation: Imagine navigating through life with the mindset that every assumption and belief needs to be scrutinized; that's the essence of Paltridge's message about skepticism in climate science. Embracing this principle can inspire you to question mainstream narratives not only in environmental issues but in all aspects of life. By fostering a habit of critical thinking, you empower yourself to make informed decisions, challenge widely held beliefs, and engage in meaningful dialogues. This approach doesn't just enhance your understanding of complex issues like climate change; it also cultivates a mindset of openness and curiosity, allowing you to adapt and thrive in an ever-evolving world.

More Free Book

Scan to Download

Chapter 11 Summary: 11 The trillion dollar guess and the zombie theory

Chapter 11: The Trillion-Dollar Guess and the Zombie Theory

In this chapter, Jo Nova explores the decline of the carbon disaster theory, which has been in decline for over a decade, thanks to extensive data from weather balloons, satellites, and robotic ocean buoys. The foundation of a multi-trillion-dollar industry hinged on a flawed assumption made in 1896 about relative humidity, which has proven to be misleading.

The origins of climate change policy began with the Charney report in 1979, which reiterated the assumption that relative humidity would remain constant even as CO2 levels increased. This assumption became a cornerstone for extensive government initiatives and investments, including global carbon markets worth upwards of \$176 billion. The reliance on this basic premise served as the basis for further scientific models, which have not performed as expected in predicting climate trends.

The Flawed Assumption

The chapter underscores that water vapor, a potent greenhouse gas, reacts dynamically with temperature changes, which complicates climate

More Free Book

Scan to Download

modeling. While CO₂ levels rise steadily, water vapor in the atmosphere fluctuates much more rapidly. The assumption in early studies posited that humidity wouldn't vary, resulting in misleading climate models which inaccurately projected that CO₂ was responsible for most warming.

These models anticipated a "hot-spot" effect in the upper troposphere—a layer of the atmosphere crucial for understanding climate feedback loops. However, measurements from 28 million weather balloons reveal a decline in humidity rather than the anticipated increases. Despite extensive data, the supposed positive feedback mechanisms from water vapor have not manifested as predicted, raising significant questions about the reliability of existing climate models.

Missing Evidence and The Response

As data continued to show discrepancies, the climate science community reacted defensively, producing an array of studies and reports, often convoluted and poorly reasoned, to maintain belief in the early models. This response was characterized by what Nova calls a "shell game" of evidence, where the presence of clear warming trends was confused with ambiguous causative connections to human activity. In reality, many observable climate changes could derive from non-anthropogenic sources, leading to a muddled understanding of climate dynamics.

More Free Book

Scan to Download

Misleading Statistics and the Pressure of Perception

Nova criticizes the use of intricate models lacking in empirical validity. The chapter discusses the so-called "pause" in global warming, where temperatures remained steady for longer than models predicted due to external factors like natural variability and potential oceanic heat uptake. This phenomenon has led to a multitude of speculative excuses rather than acknowledging the models' failures.

Interestingly, the chapter notes a conflict in climate communication, where the "95% certainty" often cited by scientists conceals significant uncertainties about climate feedback loops and the influence of water vapor on temperatures. The presence of these uncertainties highlights that overarching claims of climate science have been established on shaky foundations, with a dissonance between model results and reality.

The Futility of Evidence and The Role of Language

Innovation in scientific inquiry has increasingly been overshadowed by marketing strategies, where language and presentation are employed to frame the climate debate. Terms are weaponized, and communication is manipulated to frame skeptics as deniers, diverting attention from factual discourse to emotional appeals.

More Free Book

Scan to Download

Nova concludes by emphasizing that while carbon dioxide contributes to warming, its impact is far less severe than often communicated. The narrative surrounding climate change has become entangled in a cycle of assumptions, financing, and messaging that obfuscates the real complexities of climate science. Ultimately, the chapter presents a critique not just of the scientific theories at stake but of the socio-political and economic dynamics that sustain them.

More Free Book

Scan to Download

Chapter 12: 12 Forecasting global climate change

Chapter 12 Summary: Forecasting Global Climate Change

In this chapter, Kesten C. Green and J. Scott Armstrong critically evaluate the forecasts of global climate change, mainly those produced by the Intergovernmental Panel on Climate Change (IPCC). They begin by presenting alarming predictions, including an average temperature increase by 2070 of 2.2 to 5.0°C compared to the period of 1980-1999, and a potential rise of up to 4°C by the century's end if emissions are not curtailed. These dire projections underscore the urgency felt by scientists and governmental leaders in their responses to climate change.

However, the authors assert that such forecasts, while confident, have a track record of inaccuracy. They reference past erroneous predictions, such as that of a coming ice age by Professor Kenneth Watt, showcasing how expert predictions in complex areas like climate are often flawed. This leads Green and Armstrong to question the methods employed by the IPCC for making these climate forecasts, suggesting that decision-makers should scrutinize their validity before taking action.

The authors detail their analysis of the IPCC's forecasting methods, noting that the reliance on expert judgments and computer modeling lacks

More Free Book

Scan to Download

grounding in validated forecasting processes. They find that the IPCC violated a staggering 81% of relevant scientific forecasting principles, contributing to biased and potentially misleading results. They also highlight the "Golden Rule of Forecasting," which advocates for conservative and evidence-driven approaches, emphasizing that the IPCC has not adhered to these standards.

Moving beyond criticism, the authors explore alternative hypotheses for temperature changes, including global cooling and the idea of climate persistence (i.e., the notion that past climatic patterns are likely to continue). Their analyses demonstrate that forecasts based on these alternative hypotheses, especially the persistence model, consistently yield smaller errors compared to the IPCC's warming forecasts. They also conduct a long-term validity test against proxy temperature data, concluding that no significant evidence supports the notion of dangerous anthropogenic global warming.

Green and Armstrong further discuss the history of environmental alarms, noting that many predicted crises have, over time, failed to manifest as anticipated. By drawing on 26 analogous situations, they establish that the current alarm regarding global warming is part of a broader pattern of exaggerated environmental warnings, often leading to misguided government actions.

More Free Book

Scan to Download

In conclusion, the chapter posits that, given the fluctuating nature of climate and humanity's adaptability, forecasts suggesting a strong upward trend are unsubstantiated. Instead, they propose that global temperatures will likely remain stable, varying only slightly from present averages. The authors advocate for a rational approach to climate policy, suggesting that the lack of credible forecasts for dangerous manmade warming indicates there's little cause for concern or drastic action regarding climate change.

Install Bookey App to Unlock Full Text and Audio

[Free Trial with Bookey](#)

Read, Share, Empower

Finish Your Reading Challenge, Donate Books to African Children.

The Concept

This book donation activity is rolling out together with Books For Africa. We release this project because we share the same belief as BFA: For many children in Africa, the gift of books truly is a gift of hope.

The Rule

Earn 100 points

Redeem a book

Donate to Africa

Your learning not only brings knowledge but also allows you to earn points for charitable causes! For every 100 points you earn, a book will be donated to Africa.

Free Trial with Bookey

Chapter 13 Summary: 13 The search for a global climate treaty

Chapter 13: The Search for a Global Climate Treaty

In December 2009, the Copenhagen climate conference marked a pivotal moment in international climate diplomacy. Although UN Secretary General Ban Ki-moon announced a deal, the reality was a non-binding accord that noted countries' voluntary promises on greenhouse gas emissions—far from the legally binding treaty many had hoped for. As the Kyoto Protocol's commitment period ended in 2012, no new treaty had replaced it, and the ambitious Bali Road Map from 2007 appeared to lead nowhere. The European Council's president Herman van Rompuy described Copenhagen as a disaster, foreseeing disappointment from the subsequent climate conference in Cancún.

The fundamental challenge in climate treaty architecture lay in the division established by the Berlin Mandate of 1995, which created a stark divide between industrialized countries and developing nations. As global emissions rose, it became clear that including large emerging economies like China and India was essential for any meaningful progress. Both the Bush and later Obama administrations recognized the urgency of breaking this "climate change Berlin Wall," but their strategies diverged. While the U.S.

More Free Book

Scan to Download

sought a legally binding solution contingent upon the participation of emerging economies, the Obama administration gradually shifted focus toward a less rigorous framework.

At the subsequent conferences following Copenhagen, the U.S. pushed to formalize the Copenhagen Accord, which had been rejected by some countries including Cuba. This strategy bore fruit at the Cancún conference, where the U.S. succeeded in establishing a framework that covered a significant majority of global emissions, although this progress did not meet the expectations set by Obama's earlier commitments on climate action.

Meanwhile, the European Union's approach aimed to re-establish a clear legal framework and binding commitments for all major emitters, seeking to leverage their financial and diplomatic power to encourage compliance from developing countries. However, many developing nations were skeptical of what they perceived as Western attempts to maintain existing inequalities under the guise of climate justice.

At the 2011 Durban conference, an increasingly dramatic tone emerged. The EU sought a legally binding treaty while negotiating with various blocs within developing nations. By the end of the conference, the EU effectively managed to generate support for planning a legal framework that would encompass all countries, which many saw as a partial victory against the backdrop of dire warnings about climate impacts.

More Free Book

Scan to Download

The need for consensus and trust among all parties, however, remained elusive. By the time of the 2012 COP in Doha, discussions highlighted a sharp divide, with fresh tensions emerging around financial commitments and binding responsibilities for developed versus developing nations. Observers noted how countries began to retreat on earlier commitments, particularly Japan's rollback of its emission reduction pledge.

Warsaw COP in 2013 further exacerbated divisions. Japan's announcement to backtrack on its commitments drew denunciations from other nations, notably China, which had long positioned itself against any narrowing of the responsibilities prescribed by previous agreements. Discontent mounted as negotiations revealed an even deeper schism on how climate commitments should be framed and the core principle of "common but differentiated responsibilities" came under scrutiny.

Through this tumultuous landscape leading up to the Paris summit in 2015, the established dichotomy between developed and developing nations persisted, with little resolution in sight. The surge of political will from the EU did not translate to tangible outcomes. With a backdrop of economic concerns and a lack of coordinated effort toward a unified agreement, the prospects for a comprehensive solution to climate change continued to dim.

Ultimately, the chapter illustrates how aspirations for a global climate treaty

More Free Book

Scan to Download

were hindered by entrenched positions, conflicting national interests, and a pervasive mistrust among nations. While negotiations offered incremental steps forward, the complexity of the climate crisis proved an overwhelming challenge for the global community, revealing the stark reality that achieving consensus on such a transformative issue was akin to navigating a maze laden with obstacles.

More Free Book

Scan to Download

Chapter 14 Summary: 14 The hockey stick: a retrospective

Chapter 14: The Hockey Stick: A Retrospective

Author: Ross McKittrick

This chapter examines the controversial "hockey stick" graph popularized by climatologist Michael E. Mann in 1998, which portrayed modern temperatures as significantly higher than those of the past millennium. The graph's sharp upward trend resembled a hockey stick, fueling political momentum for climate change policies.

Mann constructed this graph relying heavily on data from Siberian tree rings, suggesting a period of extraordinary warming. However, researchers Ross McKittrick and Steve McIntyre scrutinized Mann's statistical methods and data interpretations, identifying significant flaws that indicated his findings were not as robust as claimed. They argued that Mann's approach consistently produced a hockey stick-like shape, irrespective of the underlying data's authenticity.

The inquiry into Mann's work escalated, leading to a U.S. Senate committee investigation, which revealed that Mann's assertion that the 1990s were the

More Free Book

Scan to Download

hottest decade in a millennium lacked empirical support. The implications of Mann's methodology—which included the controversial handling of data from bristlecone pine trees, known for their sensitivity to environmental changes—compounded the issues. These trees were discouraged as temperature proxies, as their growth patterns could be influenced by numerous non-climatic factors.

Mann controversially minimized uncertainties in his temperature reconstructions, subsequently claiming that 1998 was the warmest year of the millennium, a proposition that did not withstand rigorous analysis. Critics pointed out that when Mann excluded questionable data, the distinctive hockey stick pattern vanished, leading to a more stable but less alarming portrayal of historical climate data.

Confusion surrounded Mann's interpretation of statistical validation measures, particularly regarding the r^2 statistic, which reflects the reliability of statistical models. Mann claimed that he was not reliant on this statistic, instead favoring the reduction of error (RE) score. However, this claim was mere misdirection; the absence of addressing r^2 scores meant that Mann's results were misleading by omission.

The National Academy of Sciences (NAS) eventually weighed in, providing an assessment that, while ambiguous, suggested Mann's methods might indeed distort the statistical significance of his findings. They confirmed that

More Free Book

Scan to Download

many of Mann's reconstructions were unreliable, noting that low confirmation statistics indicated weak models.

Mann further complicated matters by asserting the robustness of his findings against potential biases from tree ring data. However, investigations revealed that his results heavily depended on the bristlecone records, which lacked statistical credibility when excised from the datasets—an admission he failed to make transparent.

Ultimately, this chapter encapsulates a significant episode in climate science, indicating broader issues in scientific culture and communication. The ongoing discussions around the hockey stick graph illustrate the contentious nature of climate data interpretation and the repercussions of statistical methodologies on public policy and perception in the context of climate change. As litigation continues, the saga suggests considerable implications beyond academia, reflecting societal apprehension regarding the integrity of climate science.

More Free Book

Scan to Download

Chapter 15 Summary: 15 The IPCC and the Peace Prize

Chapter 15: The IPCC and the Peace Prize - Summary

In late 2012, a magazine art director mistakenly referred to Mark Jaccard as a Nobel Laureate in a cover story, a claim rooted in a significant misunderstanding regarding the Nobel Peace Prize awarded to the Intergovernmental Panel on Climate Change (IPCC) in 2007. The prize was conferred on the entire organization, in collaboration with former Vice President Al Gore, for raising awareness of climate change but, crucially, did not recognize individual contributors.

Rajendra Pachauri, the IPCC chairman at the time, controversially claimed that each of the approximately 9,000 contributors to the IPCC reports could be considered Nobel Laureates, perpetuating a misleading narrative that overshadowed the true nature of the award. This hyperbole, viewed by some as a mere rhetorical flourish, led to a substantial misrepresentation of individuals associated with the IPCC, including Jaccard, who had only minor roles in multiple reports.

Over the years, various media outlets, institutions, and individuals have inaccurately claimed that these contributors, including Jaccard and other scientists such as David Karoly and Michael Mann, were Nobel Laureates,

More Free Book

Scan to Download

which blurred the lines between the award's true recipients and the scientists who contributed to the IPCC's work.

Despite the IPCC eventually specifying that the award was organizational and not individual—explicitly stating that those affiliated with the IPCC could not be designated as Nobel Prize winners—this clarification was too late to rectify the widespread misconceptions that had taken hold in both the public and scientific communities. These inaccuracies have been compounded by a lack of oversight and accountability in reporting and academia, leading to a persistent belief among many that these scientists deserved the Nobel recognition.

The chapter critiques both journalists and scientists for their roles in this misrepresentation, demonstrating how a collective failure in responsibility has resulted in a significant erosion of trust in scientific communication regarding climate change. As the buzz around the Nobel Prize continues to attract attention, the narrative underscores the necessity for clarity and accuracy in public discourse about science—a lesson that remains particularly pertinent in ongoing discussions about the climate crisis.

More Free Book

Scan to Download

Chapter 16: 16 Global warming's glorious ship of fools

Chapter 16: Global Warming's Glorious Ship of Fools - Summary

In this chapter, Mark Steyn uses humor and irony to critique the contemporary environmental movement and the paradoxes surrounding global warming. He begins with a playful acknowledgment of the complexities of distinguishing weather from climate, highlighting how extreme weather events can be misinterpreted as evidence of climate change. Steyn sets the scene with the Australasian Antarctic Expedition (AAE), where members found themselves trapped in ice contrary to their climate advocacy, which he describes as a perfect demonstration of their misguided beliefs.

Drawing a parallel between historical expeditions, specifically referencing Sir Douglas Mawson, who faced dire situations in the harsh Antarctic environment, Steyn contrasts the past's harsh realities with today's "eco-tourism," where climate change advocates, equipped with modern technology and comfort, take to social media to document their ordeal instead of facing grave survival challenges. The irony extends to the expedition leaders, like Professor Chris Turney, who, accompanied by family and wealthy tourists, seemed more focused on luxury than on serious scientific inquiry.

More Free Book

Scan to Download

Steyn elaborates on the cultural absurdities of climate activism, citing celebrities and high-profile figures, including Al Gore, who have been involved in eco-themed expeditions. He criticizes the contradictions of these individuals, who promote environmental activism while indulging in

Install Bookey App to Unlock Full Text and Audio

Free Trial with Bookey

Free Picks

Today's Bookey

WHAT YOU DO IS WHO YOU ARE
How to create your business culture

Get Points

Donors List

Finish a Bookey today

Achieve today's daily goal

Donation Library Me

12/100

Get enough points to donate a book

Get Points

Donors List

Finish a Bookey today

Achieve today's daily goal

Donation Library Me

ATOMIC HABITS
Four steps to build good habits and break bad ones

Atomic Habits
Four steps to build good habits and break bad ones
James Clear

36 min 3 key insights Finished

Description

Why do so many of us fail to lose weight? Why can't we go to bed early and wake up early? Is it because of a lack of determination? Not at all. The thing is, we are doing it the wrong way. More specifically, it's because we haven't built an effective behavioral habit. This book is the first to teach you how to build good habits and break bad ones.

Listen Read

Never Eat Alone

Chapter 1 of 5

Overview

Hi, welcome to Bookey. Today we'll unlock the book Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones.

Imagine you're sitting in a plane, flying from Los Angeles to New York City. Due to a mysterious and undetectable turbulence, your aircraft's nose shifts more than 7 feet, 3.5 degrees to the south. After five hours of flying, before you know it, the plane is landing.

A

System Noto Sans Cormorant Garan

Interpretation

is first for me. How the makes me feel, it's like. It has to match my life. s happening around me. That's where it comes from.

- Boots Riley

17:53 Hannah

Daily Goals
Read or listen to achieve your daily goals

2 of a 13-min goal

1 day streak Best score: 2 days

Time of Use
Finished 6183 min 102 Bookies

Badges

Chapter 1 of 5
Never Eat Alone

17:25 Library

Bookeys IdeaClips Notes Quotes

Saved 72 >

Downloaded 0 >

Finished 103 >

History 14/08/2024

See all

ATOMIC HABITS
Four steps to build good habits and break bad ones

Human Compatible
AI and the Future of Human Consciousness

1/7 Bookies Develop leadership skills
Unlock Your Leadership Potential

1/7 Bookies Master time management
From Chaos to Control

3/6 Bookies Improve your writing skills
Successful Prose!

Badges

Chapter 1 of 5
Never Eat Alone

17:26 Top 10 of the month

Updated monthly

01 HOW TO TALK TO ANYONE
Leil Lowndes

02 Atomic Habits
James Clear

World's best ideas unlock your potential

Free Trial with Bookey

Scan to download

Chapter 17 Summary: 17 Cavemen, climate, and computers

In Chapter 17 titled "Cavemen, Climate, and Computers," Christopher Essex engages readers in an intriguing debate that juxtaposes Paleolithic beliefs with modern scientific discourse about climate change. The chapter begins with an imaginative interaction between a mysterious time traveler, who introduces the concept of microwave ovens, and a Paleolithic shaman, who invokes the divine through a mystical chant. However, Essex draws a parallel to his real-life experience of conveying climate science, suggesting that contemporary society, despite its advancements, often mirrors the misunderstanding of prehistoric peoples when it comes to scientific knowledge.

Essex underscores the challenges faced when engaging non-experts in scientific discussions, noting that journalists consistently struggle to address complex subjects like climate change. He uses the example of the Navier-Stokes equations—which describe the flow of fluids—to highlight a troubling trend: a retreat from technical language that leads to distortion and oversimplification in public understanding. The crux of his argument is that avoiding mathematics is akin to children rejecting vegetables, which ultimately results in poor decision-making on issues that require informed choices.

More Free Book

Scan to Download

As the time traveler attempts to explain microwave technology through a series of simplistic analogies, Essex critiques modern climate conversations for often being decoupled from scientific rigor. He argues that people often rely on moral assessments of experts rather than understanding the scientific principles at stake. This inclination leads individuals to question the integrity of climate scientists based on unrelated personal failings instead of the validity of their research, which he finds nonsensical.

The chapter elaborates on popular methods individuals adopt to navigate complex scientific issues—ranging from blind trust in self-proclaimed experts to relying on the supposed consensus among scientists. Essex provocatively suggests that the reliance on charismatic figures, akin to shamans, to interpret complicated data has permeated the climate debate, leading to a cultural chant similar to that of “Club. Club. Club …” for uncritical acceptance of popular proclamations about climate change.

Another dimension of this discussion revolves around the ‘precautionary principle’—a methodology adopted in climate policy that Essex reframes as the ‘Wonderful World Method’ (WWM), which dismisses scientific nuance in favor of action for altruistic reasons. He critiques this approach for promoting decisions without properly weighing the scientific uncertainties or considering potential negative consequences of such actions.

Drawing attention to the role of computers in climate science, Essex

More Free Book

Scan to Download

emphasizes that while they are revered as tools for understanding complex systems, they are not infallible or inherently wise. He critiques the limitations of climate models, emphasizing that they are often oversimplified and inadequate for precise forecasting. The result is a disconnection between policymakers and scientific realities, where the models are seen as oracles without addressing their fundamental flaws.

In conclusion, Essex argues that society's misunderstanding of science—fueled by an aversion to engaging with technical details—compromises effective discourse on climate change. He champions the notion that people possess an innate capacity for scientific reasoning and urges greater engagement and understanding of climate science. Ultimately, he laments our return to archaic beliefs in modern discussions of climate, challenging readers to recognize and confront these dynamics for a more informed approach to global environmental issues.

More Free Book

Scan to Download

Chapter 18 Summary: 18 The scientists and the apocalypse

Chapter 18: The Scientists and the Apocalypse - Summary

In August 1990, the United Nations Intergovernmental Panel on Climate Change (IPCC) meeting in Sundsvall, Sweden, marked a pivotal moment in climate negotiations as a revolt led by Brazil disrupted the scientific consensus originally guiding international climate policy. This revolt effectively transitioned the climate treaty process from the scientific authority of the IPCC to a new negotiating committee reporting directly to the UN General Assembly, where poorer nations could exert significant influence. This shift signified a loss of control for the IPCC and its parent bodies, the United Nations Environment Program (UNEP) and the World Meteorological Organization (WMO), particularly disheartening for UNEP as it approached its twentieth anniversary.

The chapter delves into the origins of the IPCC, designed as a balanced science-for-policy mechanism to navigate the complex interplay between scientific findings and policy decisions. Two essential tiers were established: the first focused on rigorous scientific assessments, while the second sought to produce a politically neutral 'Policymakers Summary'. This structure was meant to prevent the misinterpretation of scientific findings by extremists.

More Free Book

Scan to Download

either exaggerating alarm or dismissing the urgency altogether.

Historical context is crucial here. The late 1970s and early 1980s saw scientific assessments oscillating between extreme concerns—such as fears of a new ice age—and cautious recognition of the need for global cooperation to mitigate potential warming. The IPCC aimed to reconcile these views, but tensions between developed and developing nations persisted, especially as the latter demanded recognition of their development needs.

The 1985 Villach conference established momentum for a climate treaty, leading to the 1987 Brundtland Report, which introduced the concept of sustainable development, aiming to satisfy both environmental and developmental goals. Yet, paradoxically, the push for climate action began to prioritize immediate political objectives over scientific caution, especially during the heightened public interest around climate issues sparked by events in 1988.

As the IPCC prepared for negotiations, political pressure rose, particularly on its Working Group III, focused on policy responses. Despite initial assessments acknowledging significant uncertainties in climate science, heightened political interest led to demands for binding targets, and Brazil's revolt during the Sundsvall meeting represented a culmination of existing tensions.

More Free Book

Scan to Download

This revolt disrupted consensus-building and led to significant amendments to the synthesis report, requiring rapid technological transfer from developed to developing nations while undermining the IPCC's scientific authority. Consequently, a new International Negotiating Committee (INC) was established, sidelining the IPCC's role, which was temporarily relegated to providing technical advice.

As the IPCC grappled with its diminishing authority, it attempted to maintain independence and integrity by continuing to issue scientific reports. However, the emerging Framework Convention on Climate Change (FCCC) reframed its prior findings to fit political narratives, and the scientific community was pressured to reflect political desires rather than empirical truths.

Conflict persisted between the INC and the IPCC as calls for clarification on 'dangerous levels' of greenhouse gas concentrations arose. Bolin, the IPCC chair, found himself caught between the demands of policymakers and the uncertainties of scientific inquiry, leading to further tension over the IPCC's mission.

By the time the Second Assessment Report was prepared, new scientific findings revealed that detection of human-caused climate change was still uncertain. This tension reached a climax at the COP1 meeting, where IPCC

More Free Book

Scan to Download

scientists were accused of evading the demands of policymakers for clearer guidance on climate threats. Ultimately, at a crucial COP2 meeting, controversial claims of a discernible human influence on climate emerged, transforming what was intended as a cautious assessment into a bold declaration that steered treaty negotiations toward legally binding protocols.

This chapter illustrates how the climate debate evolved from a robust scientific inquiry into a polarized political battleground where the urgency to act increasingly overshadowed the complexity and uncertainties inherent in climate science. The chapter critiques how political forces exploited the scientific community's well-meaning efforts for their agenda, ultimately leading to an erosion of scientific integrity in the quest for consensus-driven action against climate change.

More Free Book

Scan to Download

Chapter 19 Summary: 19 The scientific method (and other heresies)

Chapter 19: The Scientific Method (and Other Heresies)

In this chapter, Stewart W. Franks critically examines the claims surrounding climate change and the scientific methods used to evaluate its impacts. He expresses frustration over the speculative nature of many assertions made by prominent scientists and institutions, particularly regarding droughts and floods, which are often attributed to human-induced climate change without solid evidence.

Franks emphasizes that many discussions around climate events are based on flawed interpretations and erroneous science. For instance, he highlights the response from Australian authorities attempting to connect the Murray-Darling Basin drought to anthropogenic climate change, following the 2002-3 El Niño. These claims suggested that human-induced higher temperatures led to increased evaporation, exacerbating the drought. However, Franks argues that this reasoning misrepresents the basic principles of meteorology, where low soil moisture during droughts typically results in higher temperatures due to a lack of evaporative cooling.

The chapter proceeds to critique the scientific literature, pointing out a

More Free Book

Scan to Download

myriad of studies that exhibited similar misunderstandings of evaporation and temperature relationships—not just in Australia but globally. One significant case mentioned is the Palmer Drought Severity Index (PDSI), which inaccurately linked rising temperatures to increased drought conditions, failing to account for changes in humidity, energy, and wind speed. A 2012 study by Sheffield et al. effectively refuted this simplified narrative, suggesting that many claims of increasing drought were overestimated and that there had been little change in global drought conditions over the past six decades.

Franks reflects on how, despite clear scientific misunderstandings, public and scientific discourse continues to perpetuate the belief in climate change-driven droughts and floods. He uses the example of the 2010-11 Australian floods, which were touted by experts as indicators of climate change effects. Just one week after these floods, a study linking rainfall increases to climate change was published in **Nature**, garnering media accolades despite its fundamental methodological flaws.

To effectively test the hypothesis of anthropogenic climate change, Franks argues that the focus should be on the planet's energy balance rather than merely correlating weather events with climate change rhetoric. Drawing on NASA's studies of longwave radiation, he emphasizes that while CO₂ levels have risen significantly, the resultant increase in radiation seems muted compared to natural fluctuations.

More Free Book

Scan to Download

Franks discusses shortwave radiation, highlighting that its variability plays a more crucial role than longwave radiation in determining the Earth's energy balance, illustrating that changes in cloudiness significantly impact incoming solar energy. His critique extends to the observed hiatus in global warming from 2000 onwards, where various explanations have emerged but often rely on untested or model-dependent assertions rather than solid observational data.

The chapter culminates with a call for a more rigorous application of the scientific method, specifically through the falsification of theories based on empirical evidence rather than adapting failed models to fit anomalies.

Franks suggests that the climate science community has frequently fallen into the trap of fortification, modifying theories to encompass discrepancies rather than learning from them. He concludes that while speculation regarding climate events like floods and droughts is rampant, they often lack a scientific foundation.

In closing, Franks urges for a return to a more grounded scientific inquiry that directly measures climate effects and scrutinizes the validity of catastrophic climate predictions. Rather than yielding to sensational narratives, the scientific community should seek a nuanced understanding of climate dynamics grounded in observable and testable data.

More Free Book

Scan to Download

Critical Thinking

Key Point: The Importance of Rigorous Scientific Inquiry

Critical Interpretation: Imagine embracing a mindset where every assertion you encounter about climate change—news articles, expert opinions, social media discussions—sparks a genuine curiosity rather than blind acceptance. By prioritizing rigorous scientific inquiry in your own life, you can inspire a culture of critical thinking. When you question the sources of information and demand empirical evidence behind claims, whether about extreme weather patterns or public policy decisions, you become an advocate for truth. This approach not only enriches your understanding but also empowers you to engage constructively in discussions about climate, encouraging others to seek clarity in the fog of speculation. Ultimately, your commitment to scientific rigor can transform conversations, steering them towards a balanced view rooted in observable reality rather than sensationalism.

More Free Book

Scan to Download

Chapter 20: 20 Extreme weather and global warming

In Chapter 20, titled "Extreme Weather and Global Warming" by Anthony Watts, the author critiques the common perceptions surrounding climate change and its relationship to extreme weather events. He begins by explaining that the direct consequences of increased global temperatures—such as rising sea levels, shrinking glaciers, and more frequent heatwaves—are distant and often imperceptible for the average person, particularly those living in the U.S. Midwest. For instance, while sea level rise occurs slowly (approximately 1.7 to 3.3 mm annually), this gradual change is not immediately felt or detected in daily life.

Watts highlights that the long-term increase in global temperature, roughly 0.8°C (1.4°F) since the early 20th century, is similarly subtle and not readily observable. Notably, he addresses how the visualization of temperature changes can affect public perception. Standard representations of global average temperatures might not instill concern due to their subtle nature. Instead, anomaly graphs—showing deviations from a historical average—exaggerate these minor changes, making them appear more alarming.

This shift in terminology from "global warming" to "climate change" reflects an intent to broaden the discussion, especially to avoid discomfort with what scientists have termed "the pause," a period of stagnant

More Free Book

Scan to Download

temperature increase that stretches over a decade. The author argues that referring to "climate change" lacks urgency and tends to evoke a less fearful response from the public.

As public concern waned, officials, including White House adviser John Holdren, introduced terms like "global climate disruption" to elevate urgency. Yet, Watts argues that these claims equate minor temperature increases to predictable extreme weather events, which is more a product of perception than fact. For example, while climate scientists like Dr. James Hansen assert that climate change has loaded "climate dice" towards extreme heat, Watts posits that historically, extreme weather events would still have occurred naturally, albeit potentially at slightly lower temperatures.

Further, in examining reports on extreme weather, Watts points out that the common belief that such events are increasing in frequency is largely attributable to modern media's ability to broadcast real-time updates, vastly different from earlier eras when severe weather was less documented. He cites studies suggesting that many flood and climatic trends show no significant increase in severity despite public perception.

Overall, Watts contends that a clear distinction should be made between actual climatic data and public sentiment influenced by media projections. He refers to the Intergovernmental Panel on Climate Change (IPCC)'s Fifth Assessment Report, which indicates little concrete linkage between severe

More Free Book

Scan to Download

weather events and human-induced climate change. Consequently, he argues that sensationalized claims relating weather events to climate change serve more as a tool for generating concern rather than reflecting scientific reliability.

In conclusion, Watts calls into question the narrative that connects climate change directly to extreme weather events, suggesting that much of this association is a result of technological shifts in information sharing rather than unequivocal climatic trends. The chapter urges readers to approach the subject critically, distinguishing between proven data and the emotional or sensational framing often found in media discussions of climate change.

Install Bookey App to Unlock Full Text and Audio

[Free Trial with Bookey](#)

Try Bookey App to read 1000+ summary of world best books

Unlock 1000+ Titles, 80+ Topics

New titles added every week

Brand

Leadership & Collaboration

Time Management

Relationship & Communication

Business Strategy

Creativity

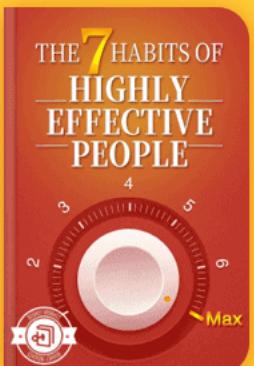
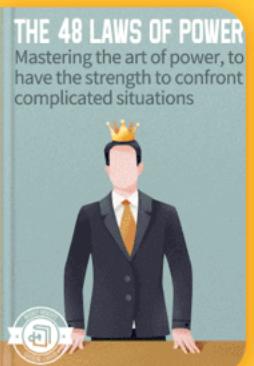
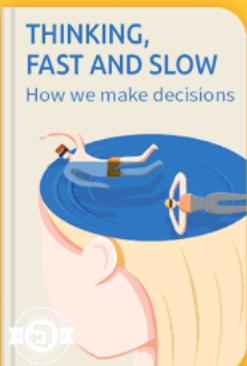
Public

Money & Investing

Know Yourself

Positive P

Entrepreneurship




World History

Parent-Child Communication

Self-care

Mind & Sp

Insights of world best books

Free Trial with Bookey

Chapter 21 Summary: 21 False prophets unveiled

Chapter 21: False Prophets Unveiled

In this chapter, Andrew Bolt makes a case against the prevailing authority of climate experts, emphasizing the need for laypeople to question and scrutinize their predictions. Using a metaphor of trusting a ship's captain to navigate correctly, he argues that just because someone holds expertise, it does not mean their predictions will always be accurate.

Bolt cites historical misjudgments from climate scientists, particularly regarding predictions of extreme weather events and temperature rises, illustrating how these forecasts often failed to materialize. He refers to the UN's Intergovernmental Panel on Climate Change (IPCC) projections from 2001, which predicted a significant increase in global temperatures, a scenario he claims has not occurred. This mismatch between expectation and reality, he argues, prompts a need to reassess the reliance on climate science.

Bolt reflects on past warnings from prominent climate figures—such as Tim Flannery—who forecasted droughts and water shortages in Australia that did not come to pass. He highlights contradictions in their claims, such as when Flannery suggested there would be insufficient water supply in major cities, only for those cities to subsequently experience floods.

More Free Book

Scan to Download

Highlighting discrepancies between predictions and observed outcomes, Bolt argues that countless alarming projections about climate change (like rising sea levels and the devastation of the Great Barrier Reef) have been over-exaggerated or proven incorrect. He notes that the scientific community has often downplayed or ignored evidence contradicting widespread alarmist predictions.

Ultimately, Bolt concludes that the time has come for a revolution in thinking about climate science—encouraging skepticism and critical analysis over blind trust in expert opinions. By challenging the established narratives, he believes ordinary people can reclaim common sense and make informed decisions about climate policies without being swayed by alarmist forecasts.

More Free Book

Scan to Download