
Data Structures And Algorithms In
Python PDF (Limited Copy)

Michael T. Goodrich

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Data Structures And Algorithms In Python
Summary

"Mastering Programming Efficiency with Real-World Applications"

Written by Books1

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


About the book

Dive into the world of computational magic with "Data Structures and

Algorithms in Python" by Michael T. Goodrich, a guide that transforms the

abstract complexities of data management into an art of simplicity and

elegance. Designed with both intricacy and clarity, the book takes you on an

insightful journey through the key concepts that power modern computing.

Here, Python, known for its versatility and readability, becomes your tool of

mastery as you delve into fundamental strategies that optimize performance,

enhance storage, and streamline processes. Whether you are a seasoned

programmer seeking to refresh your knowledge or a newcomer intrigued by

the finesse of predictive modeling, this book promises to sharpen your skills

and ignite your passion for creating efficient, effective code. Embark on this

captivating adventure where theory meets practice, and discover how

nurturing these core principles can innovate the way you solve problems and

develop applications.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


About the author

Michael T. Goodrich is a renowned educator and author in the field of

computer science, specializing in data structures and algorithms, with a

substantial impact in both academic and professional circles. A professor at

the University of California, Irvine, Goodrich has co-authored numerous

influential textbooks, empowering students and practitioners alike with a

deep understanding of computational theory and practical applications.

Recognized for his clear writing style and pedagogical approach, he has

contributed significantly to both the theory and applied aspects of computer

science, addressing complex topics with simplicity and clarity. Beyond his

authorship, Goodrich's extensive research encompasses various domains,

including algorithm design, computational geometry, and more, serving as a

foundational pillar for those looking to master the intricacies of computer

programming and data manipulation.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


https://ohjcz-alternate.app.link/zWumPVSnuOb


Summary Content List

Chapter 1: 1 Python Primer

Chapter 2: 2 Object-Oriented Programming

Chapter 3: 3 Algorithm Analysis

Chapter 4: 4 Recursion

Chapter 5: 5 Array-Based Sequences

Chapter 6: 6 Stacks, Queues, and Deques

Chapter 7: 7 Linked Lists

Chapter 8: 8 Trees

Chapter 9: 9 Priority Queues

Chapter 10: 10 Maps, Hash Tables, and Skip Lists

Chapter 11: 11 Search Trees

Chapter 12: 12 Sorting and Selection

Chapter 13: 13 Text Processing

Chapter 14: 14 Graph Algorithms

Chapter 15: 15 Memory Management and B-Trees

Chapter 16: A Character Strings in Python

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 17: B Useful Mathematical Facts

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 1 Summary: 1 Python Primer

Chapter 1: Python Primer

1.1 Python Overview

Python is a high-level programming language developed by Guido van

Rossum in the 1990s. It's widely used in both industry and education. There

are two main versions: Python 2, released in 2000, and Python 3, released in

2008, which is the focus of this book. Python's popularity stems from its

simplicity and robust community support, with resources available on

python.org.

1.1.1 The Python Interpreter

Python is an interpreted language, meaning its commands are executed

through an interpreter, either interactively or as a script saved with a `.py`

suffix. On most systems, the interpreter starts with the `python` command.

An optional `-i` flag executes a script and then enters interactive mode. IDEs

like IDLE, which comes with Python, offer enhanced development

environments.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


1.1.2 Preview of a Python Program

Python's syntax uses indentation for blocks of code. Code Fragment 1.1 is an

example program calculating a student's GPA from letter grades. It

highlights Python's use of whitespace and comments (using `#`). The

primary focus here is on understanding the Python syntax and how

indentation dictates code blocks.

1.2 Objects in Python

Python is object-oriented, with classes forming the backbone of data types.

Built-in classes include `int`, `float`, and `str`.

1.2.1 Identifiers, Objects, and the Assignment Statement

Identifiers in Python are names for objects created using assignment

statements like `temperature = 98.6`, where `temperature` becomes an alias

for the `float` object `98.6`.

1.2.2 Creating and Using Objects

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Instantiation creates new class instances using syntax like `Widget()`, and

built-in functions can return such instances. Methods are called using the dot

operator, affecting the object's state or returning information.

1.2.3 Python’s Built-In Classes

Python's built-in classes include mutable types like `list` and immutable

types like `tuple`, `str`, and `float`. Lists store sequences, tuples are

immutable lists, and strings are specialized for text.

1.3 Expressions, Operators, and Precedence

Python supports arithmetic, logical, comparison, and sequence operators.

Operator precedence rules dictate the order of evaluation, e.g., multiplication

precedes addition. Parentheses can override this order.

1.3.1 Compound Expressions and Operator Precedence

Operators are evaluated based on precedence, from unary operators to

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


assignments. For example, `5 + 2 * 3` evaluates as `5 + (2 * 3)`.

1.4 Control Flow

Control structures in Python include conditionals (`if`, `elif`, and `else`) and

loops (`while` and `for`). Indentation is used to define code blocks.

1.4.1 Conditionals

Conditionals execute code blocks based on Boolean conditions. For instance,

`if x > 0:` executes a block if `x` is greater than zero.

1.4.2 Loops

`while` loops execute blocks as long as a condition is true, whereas `for`

loops iterate over elements in an iterable. Python also supports the `break`

and `continue` statements to manage loop execution.

1.5 Functions

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Functions are defined using `def`, with parameters allowing data to pass into

the function. Functions can use `return` to output data.

1.5.1 Information Passing

Parameters in Python are passed by assignment. A function call like `prizes

= count(grades, "A")` makes `data` and `target` aliases to `grades` and `"A"`.

1.5.2 Python’s Built-In Functions

Common built-in functions include `abs`, `max`, `len`, and `range`. These

functions facilitate various operations like mathematics and string

processing.

1.6 Simple Input and Output

Python's `print` function outputs text, while `input` reads user input,

returning it as a string. Reading and writing files use the `open` function to

provide file proxies.

1.6.1 Console Input and Output

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


The `print` function writes output with custom separators and end strings.

The `input` function reads and returns input as a string.

1.6.2 Files

Files are accessed in Python using `open`, with modes like `r` for reading,

`w` for writing, or `a` for appending.

1.7 Exception Handling

Exceptions are errors that halt execution unless handled. Python uses

`try-except` blocks to manage exceptions and recover from errors.

1.7.1 Raising an Exception

Exceptions are raised with the `raise` statement. For example, `raise

ValueError("Invalid number")` throws a `ValueError`.

1.7.2 Catching an Exception

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


`try-except` allows for error handling, catching exceptions like `ValueError`

and reacting through defined error-handling code.

1.8 Iterators and Generators

Iterators manage traversals through objects, while generators produce lazy

evaluations, generating values on-demand, often with the `yield` statement.

1.9 Additional Python Conveniences

Python features like conditional expressions (`expr1 if condition else

expr2`), comprehensions (e.g., `[x*x for x in range(5)]` for lists), and

automatic packing and unpacking ease manipulation of data.

1.10 Scopes and Namespaces

Python scopes determine where a variable can be accessed. Functions and

classes, as first-class objects, are namespaced, managing identifiers in their

contexts.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


1.11 Modules and the Import Statement

Modules, like `math`, extend Python's functionality beyond built-in

capabilities. Modules are imported using `import` or `from ... import`.

1.11.1 Existing Modules

Modules like `random`, `os`, and `time` provide additional functionalities

such as random number generation and system interaction. 

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 2 Summary: 2 Object-Oriented Programming

Chapter 2: Object-Oriented Programming

2.1 Goals, Principles, and Patterns

In object-oriented programming (OOP), the primary components are

"objects," which are instances of "classes." Each class is a blueprint defining

the data (attributes) and operations (methods) that its objects will perform.

The essence of OOP is to achieve robustness, adaptability, and reusability in

software design. Robustness ensures correct and safe execution even with

unexpected inputs, exemplified by the Therac-25 accident where software

failures had dire consequences. Adaptability allows software to evolve with

changing conditions, while reusability facilitates the reuse of software

components across different applications.

To achieve these goals, OOP relies on three core principles:

- Modularity: Dividing a program into distinct, functionally cohesive

 units. This organization, akin to separating home subsystems like plumbing

and electrical systems, helps manage complexity.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


- Abstraction: Simplifying complex systems by focusing on their

 essential aspects. Abstract data types (ADTs) represent data and operations

abstractly rather than focusing on implementations.

- Encapsulation: Hiding internal details of an object and exposing only

 necessary components via a public interface. This protection allows changes

to the hidden parts without affecting other parts of a program.

Design patterns further aid OOP by providing solutions to common design

problems. Notable patterns include recursion, divide-and-conquer, and the

template method.

2.2 Software Development

The software development process includes design, implementation, and

testing/debugging phases. During design, developers decide how to

decompose a program into classes, and assign responsibilities and

interactions. An initial design tool is the CRC card

(Class-Responsibility-Collaborator) using index cards to plan

responsibilities and collaborators. UML diagrams can document the design

structure.

Pseudo-code, a higher-level description of algorithms, is used before actual

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


coding, which follows strict style guidelines for readability. Good coding

practice involves meaningful naming conventions and clear documentation,

often embedded with block comments or docstrings.

Testing involves verifying the correctness of programs through

representative input samples, often focusing on special cases and boundary

conditions, while debugging methods include using print statements,

stubbing, and running code in environments like Python's pdb.

2.3 Class Definitions

Classes encapsulate data and behaviors for objects through the 'self'

identifier linking an object’s instance within its methods. Using Python, we

can implement classes like a `CreditCard`, which models customer accounts,

charges, and payments. We demonstrate encapsulation, offering methods for

balance retrieval and manipulation while safeguarding internal details.

Operator overloading in Python allows classes to define behaviors for

standard operators (e.g., +, -, *) by implementing special methods like

`__add__` for custom objects like a `Vector`. Python employs these special

methods to ensure consistent and expected behavior across different data

types.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Iterators generalize access to elements of a collection sequentially. An

example is the `SequenceIterator` that iterates over sequence-based data

types. Python's `range` demonstrates lazy evaluation, generating sequences

efficiently without large memory requirements.

2.4 Inheritance

Inheritance allows a class to extend another, inheriting its attributes and

behaviors. The `CreditCard` example is extended to a `PredatoryCreditCard`

which adds fees and interest calculations. Many programming frameworks

use inheritance, including Python’s own exceptions hierarchy, for better

reuse and specialization. Class hierarchies help organize functionalities at

different abstraction levels.

Progressions, such as arithmetic or geometric, demonstrate this hierarchy.

The base `Progression` class is abstract, providing a foundation for specific

sequence behavior in subclasses. Abstract base classes support

polymorphism, where derived classes exhibit unique behaviors while

maintaining a shared interface.

2.5 Namespaces and Object-Orientation

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Namespaces help manage scopes by associating identifiers with objects. An

instance namespace manages data for individual objects, while class

namespaces store shared components like methods and class-level constants.

Sharing methods among instances ensures memory efficiency and

consistency in behavior. Class data members, such as constants, enforce

shared values across all instances, while nested classes support structured,

isolated definitions for auxiliary objects.

Collaborative design is further enhanced by organizing shared methods and

using constructors to streamline member introductions, such as through

`__slots__` for memory efficiency in lightweight classes. Understanding the

resolution order for attribute names, which follows instance to class to

inheritance hierarchy, is crucial in correctly implementing and deploying an

OOP design.

2.6 Shallow and Deep Copying

Copying objects differentiates between aliasing (shallow copies) and

duplicating underlying data (deep copies). Shallow copies reuse object

references, potentially leading to unintended side-effects, while deep copies

recreate objects entirely. Python's `copy` module facilitates both operations,

essential in applications where independent modifications are necessary.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Exercises

The chapter concludes with exercises ranging from reinforced understanding

of principles to creative extensions in OOP, including designing class

hierarchies and implementing new functionalities, fostering a comprehensive

grasp of object-oriented design and implementation.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 3 Summary: 3 Algorithm Analysis

Chapter 3: Algorithm Analysis

In this chapter, we delve into the critical topic of algorithm analysis,

focusing on characterizing the efficiency of algorithms by evaluating their

time and space complexities. Understanding algorithm performance is

essential for designing robust and efficient data structures and computational

methods. Here is a structured summary that integrates key concepts and

logical flow:

1. Introduction to Algorithm Analysis:

   - The chapter begins by illustrating the importance of algorithm analysis,

likening it to Archimedes' discovery of a method to determine the purity of a

golden crown using displacement. Just as Archimedes needed a tool to

perform his analysis, analyzing algorithms requires specific techniques and

measures.

   - Data structures organize and access data, while algorithms are precise

procedures aimed at achieving tasks effectively.

2. Experimental Studies of Algorithms (Section 3.1):

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


   - Running time can be gauged using experimental methods where an

algorithm's implementation is timed over various inputs. This approach,

simple in Python using the `time` module, involves measuring the elapsed

time for each trial.

   - Challenges to experimental analysis include the dependency on hardware

and software environments, limited input scenarios evaluated, and the

necessity of having a complete implementation beforehand.

3. Beyond Experimentation (Section 3.1.1):

   - To address the limitations of experimental studies, the chapter introduces

theoretical approaches that:

     1. Offer comparisons independent of the specific experimental

environment.

     2. Analyze algorithms from a high-level perspective, sans

implementation.

     3. Consider all possible inputs by counting primitive operations executed

by an algorithm.

4. Common Functions in Algorithm Analysis (Section 3.2):

   - Broadly, seven functions frequently describe algorithm complexity:

constant, logarithmic, linear, n-log-n, quadratic, cubic, and exponential

functions.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


   - These functions serve as baselines for comparing growth rates, with the

goal of developing efficient algorithms ideally operating in constant or

logarithmic time.

5. Asymptotic Analysis using Big-O Notation (Section 3.3):

   - Big-O notation is introduced as a tool to express the upper bound of an

algorithm's growth rate, ignoring constant factors and minor terms.

   - Through examples, the text shows how common functions are used in

big-O expressions to predict algorithm scalability concerning input size.

6. Properties of Big-O and Related Notations:

   - Assertions include the ordering of functions by growth rate and basic

operational arithmetic with big-O.

   - Related notations, such as big-Omega and big-Theta, help depict best-,

worst-, and average-case scenarios.

7. Example Algorithms and Their Analysis (Section 3.3.3):

   - Various algorithms from computing the maximum element in a list to

checking element uniqueness are analyzed, consolidating understanding of

big-O notation and analysis techniques.

   - Detailed examples provide insights into recognizing how different

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


operations contribute to overall complexity, reinforcing theoretical concepts

with practical applications.

8. Justification Techniques (Section 3.4):

   - Logical coherence is critical in proving an algorithm’s correctness or

efficiency, utilizing proofs by example, contradiction, and induction.

   - Loop invariants demonstrate a method for verifying algorithm behavior

through iterative steps.

9. Exercises (Section 3.5):

   - Exercises encourage deep engagement with the material through

problem-solving, ranging from graphical representation and theoretical

proofs to crafting efficient algorithms.

This chapter lays a foundational framework for importing efficiency into

algorithm and data structure design. By exploiting mathematical rigor and

proving techniques, it provides tools for evaluating and understanding

algorithm performance beyond empirical testing. Through this, readers are

better equipped to develop efficient computational solutions tuned to handle

varying input scales seamlessly.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Critical Thinking

Key Point: Asymptotic Analysis using Big-O Notation

Critical Interpretation: When you begin to apply big-O notation to

assess the efficiency of algorithms, you are essentially learning to

think critically about not just the 'what' of a process, but the 'how' and

'why' as well. This key point offers more than a mathematical or

theoretical approach; it adopts a mindset you'll find invaluable in your

everyday problem-solving arsenal. Imagine navigating life's

challenges with an eye trained to spot inefficiencies and optimize

solutions. Whether managing time, organizing resources, or tackling a

creative project, embracing the principles of evaluating growth and

potential for improvement fosters not just smarter decision-making but

also a more intuitive approach to personal and professional

development. By seeing beyond the immediate complexity and

breaking challenges into digestible components, you are better poised

to thrive in an ever-evolving landscape.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 4: 4 Recursion

Chapter 4: Recursion

This chapter introduces recursion, a powerful technique in computer science

that allows a function to call itself to solve problems. This method contrasts

with the more common use of loops for repetition in programming.

Recursion is particularly useful and elegant for certain problems and is a key

part of many programming languages.

4.1 Illustrative Examples

Recursion is demonstrated through several examples:

- Factorial Function: A classic example used to illustrate recursion

 where \( n! \), or the factorial of n, is defined recursively. 

- Drawing an English Ruler: This example reflects a recursive fractal

 pattern, depicting how complex patterns can emerge from simple recursion.

- Binary Search: This is a fundamental algorithm that efficiently

 searches for a target value in a sorted sequence by repeatedly dividing the

problem in half.

- File Systems: Modern file systems have a recursive directory structure.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


 A recursive algorithm can calculate the total disk usage of all files and

directories within a directory.

4.2 Analyzing Recursive Algorithms

Efficiency analysis of recursive algorithms involves breaking down the

operations according to each function activation. For example:

- Factorial Function runs in linear time, O(n), as it scales proportionally

 with n.

- Ruler Drawing involves analyzing the number of recursive calls and

 lines printed, ultimately performing in exponential time.

- Binary Search effectively reduces its problem size by half with each

 step and runs in logarithmic time, O(log n).

- Disk Usage Calculation explores file-system entries with a strategy

 known as amortization, leading to an optimal time complexity of O(n).

4.3 Recursion Run Amok

Recursion can lead to inefficiency if not used wisely. Examples like the

improperly implemented uniqueness check or naive Fibonacci sequence

calculation highlight exponential inefficiency. A better Fibonacci calculation

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


uses linear recursion for efficiency, carefully avoiding overlapping

subproblems.

4.3.1 Maximum Recursive Depth in Python

Python limits recursion depth to prevent endless loops. This limit can be

adjusted using the sys module for applications requiring deeper recursion.

4.4 Further Examples of Recursion

Explores different types of recursion:

- Linear Recursion: Involves functions like factorial and binary search

 where each invocation leads to just one further call.

- Binary Recursion: Involves functions that engage two recursive calls,

 optimizing problems like summing sequences.

- Multiple Recursion: Explored in puzzles where the recursive call can

 branch into multiple paths, such as solving Sudoku or Towers of Hanoi.

4.5 Designing Recursive Algorithms

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Designing a recursive algorithm requires thinking about base cases and

recursive progress. Rethinking how problems are parameterized, sometimes

by introducing additional parameters or refining function return values, can

optimize recursion.

4.6 Eliminating Tail Recursion

Tail recursion, where the recursive call is the last operation, can be

transformed efficiently into iterative solutions without the overhead of

function call stacks, shown in examples like binary search and sequence

reversal.

4.7 Exercises

Exercises reinforce concepts such as recognizing recursion trace, conversion

to iteration, and exploration of different recursive problems.

Conclusion

Recursion is a powerful conceptual tool in programming, offering elegance

and efficiency in certain problem domains. However, its use needs to be

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


methodical to avoid inefficiency or infinite loops, requiring a thorough

understanding of its mechanics and proper implementation strategies.

https://ohjcz-alternate.app.link/zWumPVSnuOb


https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 5 Summary: 5 Array-Based Sequences

Chapter 5 of this book, titled "Array-Based Sequences," introduces and

 elaborates on various sequence classes in Python, such as lists, tuples, and

strings, describing their public behaviors and implementation details. The

chapter delves into Python's sequence types, explaining not only how they

function but also their significant differences and how they form building

blocks for more complex data structures. Indeed, a deep understanding of

these sequences is pivotal for efficient programming in Python.

Initially, the chapter discusses Python's sequence types, emphasizing the

commonalities, like indexing, and the internal representation through arrays.

While lists, tuples, and strings are similar in functionality, their behavior and

internal representation differ, particularly in the case of mutable lists and

tuples and immutable strings. It underlines the importance of understanding

these public behaviors to avoid bugs when copying or slicing sequences, and

it discusses when encapsulation and efficiency should take precedence over

the principles of object-oriented programming.

The chapter continues with a discussion on low-level arrays, covering the

memory architecture where bits are usually grouped into bytes, and how

these units each have unique addresses. This leads to an explanation of how

arrays use memory addresses for efficient operation, retrieving or storing a

byte in constant time, and how arrays maintain sequences of related data.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Importantly, the chapter illustrates how Python represents lists using arrays

of references. This, for instance, means a list can store varied elements,

requiring each cell to store memory addresses, thus managing references

rather than values directly.

The concept of compact arrays is introduced, where Python minimizes

memory usage by storing bits directly representing data, as seen with strings

which store an array of characters rather than references, significantly saving

space.

A critical exploration in this chapter is dynamic arrays and amortization,

explained with Python's list class, which can grow as elements are added.

The dynamic array may reserve more space than necessary; thus, as elements

fill capacity, it allocates a larger piece of memory, allowing additions

without needing excess memory overhead frequently. Through a practical

experiment, the dynamic resizing phenomena and its relation to memory

closures in Python are illustrated empirically. Subsequently, the chapter

details implementing dynamic arrays, emphasizing creating larger arrays

when the current capacity is exhausted and demonstrating the copying

process.

Amortization analysis further provides insight into the efficiency of Python's

sequence classes. Specifically, objects like dynamic arrays operate

efficiently through an amortized approach, where operations run well overall

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


despite occasional 'expensive' steps. This proves efficient, owing to

computational theory, despite the occasional need for reallocation.

Furthermore, understanding the efficiency of Python's sequence types is

crucial. The asymptotic efficiencies of list and tuple methods are tabulated to

provide a quick reference, highlighting operations like length retrieval and

element access performed in constant time, while certain operations, such as

searches, depend on the elements' distribution within sequences.

The section concludes by evaluating the mutability of lists, exploring list

operations such as 'append,' 'insert,' 'pop,' and more, each with illustrative

implementations that further explain their underlying mechanism. The

behavior, whether adding or removing elements, is narratively detailed with

its relevant computational efficiency.

Towards practical applications, the chapter highlights how array-based

sequences can address common tasks, such as maintaining a scoreboard in a

game where entries are ordered by performance, demonstrating a

straightforward use case. Another interesting application discussed is sorting

through insertion-sort. Lastly, a glimpse into simple encryption, utilizing a

Caesar cipher method, shows how strings can be manipulated intelligently

using basic array methos offer a rich exploration of sequences, not only for

understanding their operations but also to apply this knowledge

expeditiously across diverse applications, enhancing both theoretical

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


understanding and practical expertise in Python programming.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 6 Summary: 6 Stacks, Queues, and Deques

Chapter 6: Stacks, Queues, and Deques

This chapter delves into three fundamental data structures: stacks, queues,

and double-ended queues (deques). These structures are pivotal in computer

science, offering various methods for organizing and manipulating data

efficiently.

---

6.1 Stacks

A stack is a collection of objects that follows a Last-In, First-Out (LIFO)

approach. The primary operations in a stack are `push` (to add an element)

and `pop` (to remove the most recently added element), paralleling how

plates are managed in a stack. Stacks are not only elementary data structures

but are also used in numerous applications such as:

- Web Browsers: Keep track of recently visited sites, allowing users to

 navigate backward.

- Text Editors: Support undo operations by storing changes in a stack.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


6.1.1 The Stack Abstract Data Type

The stack ADT supports:

- `push(e)`: Adds element `e` to the top.

- `pop()`: Removes and returns the top element.

- Additional methods like `top()`, `is_empty()`, and `len()` facilitate stack

operations. Stacks generally assume unlimited capacity, and the operations

can handle elements of any type.

6.1.2 Simple Array-Based Stack Implementation

A stack can be implemented using Python's list, utilizing `append` and

`pop`. However, for adhering more closely to stack semantics, an adapter

design pattern is used to differentiate stack-specific operations from generic

list operations. For instance, `push` aligns with `append` and `pop` remains

the same, while `top` is realized as accessing the last element without

removing it.

6.1.3 Reversing Data Using a Stack

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Stacks are effective in reversing data sequences due to their LIFO nature.

For instance, lines of a file can be read and pushed onto a stack, then popped

to achieve a reversed order. This technique can be generalized to reverse any

data sequence.

6.1.4 Matching Parentheses and HTML Tags

Stacks are perfect for matching delimiters, such as parentheses in arithmetic

expressions or tags in HTML documents. Algorithms using stacks ensure

that opening symbols are properly paired with corresponding closing

symbols. These algorithms efficiently check for matching pairs,

demonstrating the utility of stacks in parsing tasks.

---

6.2 Queues

Queues follow a First-In, First-Out (FIFO) principle where elements are

added at the back and removed from the front. This structure is analogous to

a line of customers waiting for service. Applications include scheduling

tasks like customer service handling or print jobs in a networked printer.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


6.2.1 The Queue Abstract Data Type

Queue ADT operations include:

- `enqueue(e)`: Adds element `e` to the back.

- `dequeue()`: Removes and returns the front element.

- Supporting methods like `first()`, `is_empty()`, and `len()`.

6.2.2 Array-Based Queue Implementation

An efficient queue implementation utilizes a circular array to prevent

inefficiencies associated with shifting elements. A queue is implemented

using an array that allows wrap-around for elements, ensuring both

`enqueue` and `dequeue` operations run in constant amortized time. This

circular approach avoids the pitfalls of simple array-based implementations

that shift elements frequently.

---

6.3 Double-Ended Queues (Deques)

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Deques allow insertion and deletion at both ends, offering greater flexibility

compared to simple stacks and queues. Commonly used in applications

requiring more complex data management, the deque ADT includes

operations to add and remove elements from both the front and the back.

6.3.1 The Deque Abstract Data Type

Operations for deques:

- `add_first(e)`, `add_last(e)`: Add elements at either end.

- `delete_first()`, `delete_last()`: Remove elements from either end.

- Additional methods include `first()`, `last()`, `is_empty()`, and `len()`.

6.3.2 Implementing a Deque with a Circular Array

Implementation of deques can mirror that of circular queues, using modular

arithmetic to efficiently manage additions and removals from both ends of

the data structure.

6.3.3 Deques in the Python Collections Module

Python provides a built-in `collections.deque` class, offering a versatile

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


deques implementation that supports both ends efficiently, even resembling

lists in some functionalities such as indexed access and modifications.

---

6.4 Exercises

The chapter concludes with exercises designed to reinforce understanding of

stacks, queues, and deques, ranging from basic operations to complex

applications like postfix expression evaluations and capital gains

calculations in stock transactions.

In summary, this chapter establishes a foundational understanding of stacks,

queues, and deques—data structures crucial for efficient data management in

software applications.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 7 Summary: 7 Linked Lists

Chapter 7 Summary: Linked Lists

Chapter 7 delves into the core concepts and implementations of linked lists,

a fundamental data structure that serves as an alternative to the array-based

list discussed in previous chapters. While arrays are effective for many

purposes, they have limitations such as inefficient insertions or deletions at

interior positions and the need for resizing, which linked lists can alleviate.

7.1 Singly Linked Lists

A singly linked list is comprised of nodes where each node stores a reference

to the next node in the sequence. Key operations like insertion and removal

at the head are efficient with a singly linked list because they can be done in

constant time. However, accessing elements by index or removing the tail

node can be inefficient due to the need for traversal.

7.1.1 & 7.1.2 Implementations using Singly Linked Lists

Singly linked lists can effectively implement classic data structures like

stacks and queues. Stacks are efficiently managed by aligning their

operations with the head of the list, allowing for constant-time operations.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


For queues, both the head and tail references are maintained to facilitate

enqueueing at the tail and dequeueing at the head in constant time.

7.2 Circularly Linked Lists

In circularly linked lists, the tail node's next reference points back to the

head, creating a circular structure. This configuration suits applications like

round-robin scheduling, where operations need to cycle through a list of

items, as it allows for seamless cycling without the need for queue rotations.

7.3 Doubly Linked Lists

Doubly linked lists enhance flexibility by having nodes with references to

both the next and previous nodes. This two-way linkage allows for efficient

insertions and deletions from either end of the list or even within its interior.

The use of header and trailer sentinel nodes simplifies operations by

avoiding edge cases at the boundaries of the list.

7.4 The Positional List ADT

The positional list abstract data type (ADT) enhances linked lists by

introducing positions as semantically meaningful references to elements,

allowing for insertions, deletions, and replacements at arbitrary positions in

constant time. This abstraction decouples the element representation from

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


their physical storage, promoting higher-level manipulations without

exposing the underlying node details.

7.5 Sorting a Positional List

An insertion-sort algorithm can be adapted to operate on a positional list,

sorting elements through successive insertions into an already organized

portion of the list. This approach benefits from the efficient insertions

allowable in a linked list structure.

7.6 Case Study: Maintaining Access Frequencies

In scenarios where accessing elements based on frequencies is crucial, a

favorites list can be implemented using either a sorted list or more

dynamically with a move-to-front heuristic. The latter takes advantage of

usage patterns where recently accessed items are likely to be accessed again

shortly, maintaining efficiency even with frequent updates.

7.7 Link-Based vs. Array-Based Sequences

Link-based sequences, like linked lists, offer constant-time updates at

arbitrary positions and memory usage aligned with the number of elements,

whereas array-based sequences provide constant-time element access by

index and typically use memory more efficiently. Each structure presents

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


trade-offs suitable for different types of applications.

Through exercises and examples, this chapter emphasizes the application

and performance implications of linked lists, preparing you to choose the

appropriate data structure for a specific problem or application scenario.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 8: 8 Trees

Chapter 8: Trees - Summary

8.1 General Trees

Trees are critical nonlinear data structures that represent hierarchical data,

unlike linear structures like lists. This structure is prevalent in many

computer systems, such as file systems, databases, and UI designs. In tree

terminology, the hierarchical relationships are described using familial terms

like "parent," "child," and "ancestor."

8.1.1 Tree Definitions and Properties

A tree structure starts with a root node, and all other nodes are organized

under this root, forming parent-child relationships. Subtrees are subsets of a

tree starting from any node, including all its descendants. Other key concepts

include siblings (nodes sharing the same parent), internal nodes (nodes with

children), leaves (nodes without children), and paths (sequences of nodes

connected by edges).

8.1.2 The Tree Abstract Data Type

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


The tree abstract data type (ADT) allows for defining operations like

accessing the root, parents, children, checking if a node is a leaf, and

calculating the size of the tree. The Tree class employs an abstraction to

handle positions where each element is stored, supporting functionality to

navigate and interact within the tree.

8.1.3 Computing Depth and Height

The depth of a node is the number of edges from the root to the node, while

the height is the number of edges on the longest path from the node to a leaf.

Efficient algorithms to calculate these properties utilize recursive approaches

and are crucial for optimizing various tree operations.

8.2 Binary Trees

Binary trees are specialized trees where each node has at most two children,

labeled as left and right. In proper binary trees, every node has either zero or

two children, creating structures useful for decision trees and arithmetic

expressions.

8.2.1 The Binary Tree Abstract Data Type & 8.2.2 Properties of Binary

 Trees

A binary tree ADT includes specific methods to access the left and right

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


children and siblings. Certain properties relate the number of nodes to height

and help define efficiencies, such as logarithmic depth and bounds on node

numbers, making them suitable for diverse applications like search trees.

8.3 Implementing Trees

Tree structures are implemented differently depending on their type, with

binary trees often using linked structures where nodes reference their

children and parent nodes. An array-based method can also represent trees

by calculating node indices, though it is less space-efficient for irregular

trees.

8.4 Tree Traversal Algorithms

Various algorithms explore trees methodically, each with distinct

applications:

- Preorder: Visit root, then recursively visit subtrees.

- Postorder: Recursively visit subtrees, then the root.

- Breadth-First: Use queues to visit nodes level by level.

- Inorder: Special to binary trees, visiting left child, root, then right

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


 child.

These traversals have implementations in Python that support flexible

adaptation to specific tasks like printing structures or evaluating expressions.

8.5 Case Study: An Expression Tree

Expression trees represent arithmetic expressions with operators at internal

nodes and numbers at leaves. Methods like `evaluate` compute the numeric

result, while `str` produces human-readable expressions. Building such trees

involves tokenization and leveraging stack operations for constructing

binary representations.

8.6 Exercises

Exercises cover understanding tree properties, implementation practices, and

extending tree functionalities, ensuring a comprehensive grasp of tree-based

data structures.

Overall, Chapter 8 presents the fundamental concepts, properties, and

applications of tree data structures, explaining various traversal techniques

and their implementations in Python while emphasizing trees’ versatility

across computing tasks.

https://ohjcz-alternate.app.link/zWumPVSnuOb


https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 9 Summary: 9 Priority Queues

### Chapter 9: Priority Queues

9.1 The Priority Queue Abstract Data Type

Priority Queues (PQs) are an extension of the Queue data structure where

each element has a priority. Elements are added with an associated priority

and removed based on their priority rather than order of insertion (unlike

FIFO in regular queues). For example, in air-traffic control, landing

priorities are determined by various factors rather than the order the planes

arrive.

9.1.2 The Priority Queue ADT

A PQ is modeled as key-value pairs, with methods to add items, return and

remove the minimum priority item, and check if the queue is empty. The key

associated with each item determines its priority, with lower keys having

higher priorities.

9.2 Implementing a Priority Queue

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


PQ implementations can either use unsorted lists (where adding is fast but

finding/removing the minimum is slow) or sorted lists (where adding is

slower but finding/removing the minimum is fast). The unsorted approach

uses O(1) time for adding but O(n) for finding/removing the minimum. In

contrast, the sorted approach has O(n) for adding new items but O(1) for

finding/removing the minimum item.

9.3 Heaps

Heaps are a more efficient way to implement PQs using a binary tree that

satisfies two properties: heap-order (parents have priority over children) and

structure (it's a complete binary tree). Unlike naive methods, heaps balance

insertions and removals effectively, resulting in logarithmic time operations.

9.3.1 The Heap Data Structure

Heaps keep the smallest element at the root, with parents always less than or

equal to their children, and are complete, meaning all levels are filled except

the last, which is filled from the left. This guarantees a balanced tree,

making operations efficient.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


9.3.2 Implementing a Priority Queue with a Heap

Adding involves placing the new item at the bottom and "up-heap bubbling"

(swapping with parents until the heap-order property is restored). Removing

the minimum (at the root) involves moving the last item to the root and

"down-heap bubbling" (restoring the order property downwards).

9.3.3 Array-Based Representation

Heaps can be efficiently implemented with arrays, using the level numbering

system to manage indices. This representation simplifies operations like

finding a node's parent or children and efficiently managing space.

9.3.6 Bottom-Up Heap Construction

If a complete set of keys is given, heap construction can be optimized using

a "bottom-up" approach, organizing partial heaps progressively. This

improves initial heap construction to O(n) from O(n log n), setting up for

more efficient sorting algorithms.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


9.3.7 Python’s heapq Module

Python's `heapq` module offers efficient heap operations within Python lists,

allowing existing lists to function as heaps for PQs.

9.4 Sorting with a Priority Queue

Sorting using PQs can transform an unsorted sequence into a sorted one. By

inserting all elements into a PQ and repeatedly removing the minimum, we

achieve sorted order. Implementations of sorting methods like Selection Sort

or Insertion Sort use this principle but differ in whether the internal list is

sorted or unsorted, affecting their efficiency.

9.4.2 Heap-Sort

Using heaps for sorting (Heap-Sort) is more efficient, achieving O(n log n)

time by managing both insertions and removals in logarithmic time, unlike

the quadratic time complexity of naive sorting algorithms.

9.5 Adaptable Priority Queues

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Adaptable PQs allow dynamic updating of priorities for existing elements,

adding methods to update and remove arbitrary elements using

locators—references to positions in the queue. This facilitates change

without needing to search the queue linearly.

### Conclusion

This chapter presents priority queues as a flexible data structure with

numerous real-world applications, notably in scheduling and optimization

problems. Heaps provide an efficient backbone for these applications,

leveraging balanced tree properties to manage items in worst-case

logarithmic time. Adaptations of priority queues allow enhanced

functionality, making them suitable for more dynamic and interactive

applications.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Critical Thinking

Key Point: Efficient Decision-Making

Critical Interpretation: What if the decisions in your daily life could be

made more effortlessly, with priority given to what truly matters to

you? By understanding and embracing the concept of priority queues

and their implementation through heaps, as discussed in Chapter 9 of

your book, you can revolutionize how you prioritize tasks, goals, and

commitments. With priority queues, you're not just adding tasks to a

list, hoping you'll get to them all; you're dynamically ranking each

item by its importance and addressing them strategically. Likewise,

adopting this approach can lead to a more structured, organized life

where personal and professional challenges are met with clarity and

focus. Just as heaps efficiently balance and execute tasks in systemic

order, you can harness this perspective, ensuring that what is most

valuable to you is up there at the top. Let this chapter's teachings

inspire you to prioritize with vision and eliminate the noise so the

most meaningful elements of your life's journey always take

precedence. Transform cluttered chaos into structured efficiency, akin

to lifting the veil and welcoming a clearer, more purposeful path

forward.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 10 Summary: 10 Maps, Hash Tables, and Skip
Lists

In Chapter 10, we delve into key data structures: maps, hash tables, and skip

 lists. This exploration expands the foundational concepts of the map ADT

(Abstract Data Type), akin to Python's `dict` class, moving on to more

complex data structures that offer efficient solutions for various applications.

### 10.1 Maps and Dictionaries

We start by focusing on maps, an abstraction where unique keys are linked

to associated values, commonly known as associative arrays. The chapter

explains map operations: storing, retrieving, and managing these key-value

pairs. Maps can be represented simply, like in listing currencies of countries,

or more complexly, like using student IDs for accessing student records.

Essential map functions such as adding, querying, and modifying entries are

highlighted, illustrating typical map applications like counting word

frequencies in texts. Python’s `MutableMapping` base class and a custom

`MapBase` class are introduced, setting the groundwork for implementing

various map types. The `UnsortedTableMap` is presented as a baseline map

with O(n) complexity for key operations, highlighting inefficiencies that

lead us to explore better alternatives.

### 10.2 Hash Tables

Hash tables, pivotal for map implementations, offer more efficient key

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


management through hash functions. A hash table pairs a bucket array with a

hash function, which translates keys into array indices. Challenges arise

when multiple keys map to the same index, prompting collision-handling

techniques like separate chaining and open addressing. Each method

balances memory usage and operation efficiency by either linking collisions

in lists (chaining) or probing for the next available slots (open addressing).

Python’s own dictionary directionally employs these principles, achieving

expected O(1) access times. Custom implementations such as

`ChainHashMap` (using chaining) and `ProbeHashMap` (using probing)

illustrate how hash tables maintain efficiency through load factors and

rehashing techniques.

### 10.3 Sorted Maps

We introduce the sorted map ADT, an extension enabling range and inexact

queries by maintaining keys in a natural order. Using sorted search tables

with binary search underpinning, sorted maps allow efficient searches but

slow updates due to the need for element shifts. Applications like flight

scheduling and maxima sets demonstrate scenarios where sorted maps thrive

by leveraging the order of keys for complex queries and data management.

### 10.4 Skip Lists

Skip lists offer a balanced approach, merging the order of arrays with the

update flexibility of linked lists. This probabilistic structure, visualized with

multiple levels of linked lists, supports fast search and update operations by

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


promoting random subset keys to higher levels, mimicking balanced trees.

Expected O(log n) performance makes skip lists practical despite potential

extreme cases. These lists exemplify the power of using randomness in data

structures to maintain simplicity and efficiency.

### 10.5 Sets, Multisets, and Multimaps

Exploring relational data structures, this section covers sets (unordered,

unique elements), multisets (allowing duplicates), and multimaps (one key,

multiple values). By adapting map principles, these structures efficiently

manage collections and support operations like union, intersection, and

difference. Python's `set` and `Counter` classes parallel these ideas, offering

practical applications in data-driven scenarios like text frequency analysis

and music playlists.

Finally, exercises and projects are provided to deepen understanding through

hands-on implementation and exploration of these data structures, promoting

both theoretical and practical knowledge of advanced data handling in

computer science.

Section Description

10.1 Maps
and
Dictionaries

Covers maps as key-value pair abstractions akin to Python’s `dict` class.
Discusses map operations, such as adding, querying, and modifying
entries, including the inefficiencies and solutions in map
implementations. Introduces `UnsortedTableMap` and base classes for
custom map types.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb


Section Description

10.2 Hash
Tables

Details hash tables' implementation of maps using hash functions and
bucket arrays. Discusses collision handling techniques like separate
chaining and open addressing, showing how they manage memory and
efficiency. Implements `ChainHashMap` and `ProbeHashMap` for
hashing.

10.3 Sorted
Maps

Introduces sorted maps and their ability to handle range and inexact
queries by maintaining keys in order. Focuses on binary search for
efficient querying but notes slower updates due to key shifting.
Demonstrates applications in scheduling and complex data queries.

10.4 Skip
Lists

Explains skip lists as a probabilistic structure combining array ordering
with linked list flexibility. Provides fast search/update operations through
multiple linked list levels, with performance analogized to balanced trees.
Highlighted for randomness efficiency.

10.5 Sets,
Multisets,
and
Multimaps

Explores relational data structures for managing collections: sets (unique
elements), multisets (with duplicates), and multimaps (multiple values
per key). Discusses operations like union and intersection, with parallels
to Python's `set` and `Counter` classes.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb


Critical Thinking

Key Point: Unleashing the Power of Hash Tables

Critical Interpretation: Imagine a world where your thoughts and

actions move as swiftly and efficiently as a hash table processes data.

Hash tables, with their exemplary attribute of providing average O(1)

time complexity for search, insertions, and deletions, showcase how

life can be optimized by focusing on efficient problem-solving

strategies. By employing a hash function, akin to your mental ability

to sort priorities or focus energy on what matters most, you can handle

life's challenges by quickly categorizing and addressing them.

Embrace the harmony of structured organization and rapid responses,

akin to hash tables resolving collisions, ensuring you not only

confront but thrive amidst the battles life presents. In your personal

journey, channeling the spirit of a hash table unlocks areas of potential

you never knew existed, much like its unparalleled efficiency in the

digital realm.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 11 Summary: 11 Search Trees

Chapter 11 of this text focuses on various types of search trees, a vital data

 structure in computer science, which are used to efficiently store and

retrieve ordered data.

### 11.1 Binary Search Trees

This section introduces the concept of binary search trees (BSTs), a

foundational type of search tree where each node has at most two children.

In a BST, for any given node, the left child contains values lesser than the

node, and the right child contains values greater than the node. This section

guides readers through navigating a BST, performing operations like

searching, inserting, and deleting, enhancing understanding with Python

implementations and discussing performance factors.

#### 11.1.1 Navigating a Binary Search Tree

The section explains how an inorder traversal of a BST yields keys in

ascending order, underscoring how this trait can be exploited to perform

operations like finding minimum, maximum, and succeeding keys

efficiently.

#### 11.1.2 Searches

Search operations in a BST are expounded upon, noting how they compare a

target value to nodes beginning at the root and decide which subtree to

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


traverse based on the comparison.

#### 11.1.3 Insertions and Deletions

The manipulations necessary to insert or delete keys while maintaining the

BST property are detailed, delving into the structural changes needed to

preserve order.

#### 11.1.4 Python Implementation

A detailed Python implementation of a BST as a `TreeMap` is provided,

supporting methods for mapping key-value pairs and extending to sorted

maps.

#### 11.1.5 Performance

The efficiency of BSTs relates to their height. While a well-balanced BST

ensures logarithmic operation times, poor balancing can result in linear time

complexity.

### 11.2 Balanced Search Trees

This section introduces methods to maintain balanced BSTs over time,

which ensures operations remain efficient by keeping the tree height

logarithmically proportional to the number of nodes. It discusses balancing

through rotations.

### 11.3 AVL Trees

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


AVL trees guarantee a height-balancing property, where the heights of left

and right subtrees of any node differ by at most one, ensuring operations

scale logarithmically with tree size. The chapter covers insertion and

deletion in AVL trees, each operation potentially triggering rotations to

maintain balance, with Python code illustrating these concepts.

### 11.4 Splay Trees

Splay trees apply the move-to-root heuristic frequently during operations,

leading to a balance emerging through use. The chapter discusses splaying

operations, analyzing the amortized time complexity that makes splay trees

competitive for certain workloads.

### 11.5 (2,4) Trees

This section discusses (2,4) trees, a kind of multiway search tree where

nodes can have up to 4 children, enabling compact height and efficient

updates. They maintain balance by enforcing a range on the number of

children and ensuring all leaf nodes are at the same depth.

### 11.6 Red-Black Trees

Red-black trees are a self-balancing form of binary trees that use a coloring

strategy to enforce a structure similar to (2,4) trees. Each node is colored red

or black to ensure balance, enforcing that the path from the root to a leaf has

the same number of black nodes. This section explores how these properties

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


allow logarithmic time searches, insertions, and deletions.

### Conclusion

Each variant of search tree discussed has unique properties ensuring

operations remain efficient, with the choice of implementation depending on

the specific needs regarding balance maintenance and operational

distribution. The chapter further includes detailed exercises to deepen

understanding and test comprehension of the intricate balancing mechanics

within search trees.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Critical Thinking

Key Point: Balanced Search Trees

Critical Interpretation: Balanced search trees, often considered the

unsung heroes of computational efficiency, can be a metaphor for

balance in your life. Much like a balanced search tree maintains its

efficiency by keeping all elements at an optimal height, adopting a

well-balanced approach to our daily decisions and activities can result

in efficient time use and energy distribution across diverse pursuits.

By consciously making the effort to maintain equilibrium in our

personal, professional, and social lives, we set ourselves up for

exponential growth and success, minimizing stress and maximizing

output. The idea is profound: as balancing a tree ensures optimal time

complexity, achieving balance in life can pave the way for streamlined

processes, fostering resilience and longevity in our endeavors.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 12: 12 Sorting and Selection

Chapter 12: Sorting and Selection

12.1 Why Study Sorting Algorithms?

Sorting algorithms are fundamental in computer science, crucial for

organizing data from smallest to largest (or vice versa). They enable efficient

searches and are frequently used as a subroutine in more complex

algorithms. Python offers built-in methods like `sort` and `sorted` to help

programmers sort data efficiently, mostly through advanced sorting

algorithms. A deep understanding of sorting algorithms helps in anticipating

efficiency and is applicable in other algorithmic developments. This chapter

introduces commonly known algorithms such as insertion-sort,

selection-sort, bubble-sort, heap-sort, and explores merge-sort, quick-sort,

bucket-sort, and radix-sort.

12.2 Merge-Sort

Merge-sort is a classical algorithm that uses a divide-and-conquer strategy:

1. Divide: Split the array into two halves until subproblems become

 simple enough to solve directly.

2. Conquer: Recursively sort both subarrays.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


3. Combine: Merge the sorted subarrays to produce a sorted result.

Merge-sort is typically implemented on arrays or linked lists and runs in O(n

log n) time. Its execution can be visualized by a binary tree called a

merge-sort tree, where the height is logn, crucial for analyzing the

algorithm's efficiency.

12.3 Quick-Sort

Like merge-sort, quick-sort also employs a divide-and-conquer strategy but

chooses a 'pivot' to partition the data:

1. Divide: Choose a pivot, then reorder the list so that elements less than

 the pivot come before it and those greater come after.

2. Conquer: Recursively apply the above process to the sublists.

Quick-sort's worst-case time is O(n²), but with a randomized pivot selection,

it generally runs in O(n log n) time. This chapter also covers an in-place

implementation that sorts the array by rearranging elements without extra

space, apart from the recursion stack. 

12.4 Studying Sorting through an Algorithmic Lens

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


�S�o�r�t�i�n�g�'�s� �l�o�w�e�r� �b�o�u�n�d� �w�i�t�h� �c�o�m�p�a�r�i�s�o�n�s� �i�s� �©�(�n� �l�o�g� �n�)� �f�o�r� �a�n�y� �a�l�g�o�r�i�t�h�m�,� �a�s

demonstrated using decision trees. However, this can be improved with

non-comparison based algorithms if elements meet certain constraints.

12.5 Comparing Sorting Algorithms

Choosing the best sorting algorithm depends on the specific context:

- Insertion-Sort: Efficient for small or nearly sorted data.

- Heap-Sort: Offers O(n log n) performance but typically slower than

 quick-sort or merge-sort.

- Quick-Sort: Typically faster in practice, with an expected O(n log n)

 time, but unstable.

- Merge-Sort: Guarantees O(n log n) time and is stable, but not in-place.

12.6 Python’s Built-In Sorting Functions

Python provides the `sort` method and `sorted` function based on Tim-sort,

an optimized hybrid of merge-sort and insertion-sort, ideal for real-world

data. Sorting can be customized using a key function to dictate order based

on attributes.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


12.7 Selection

The selection problem involves finding the k-th smallest element in a list.

While sorting can solve it in O(n log n) time, it's possible to achieve O(n)

time with algorithms like randomized quick-select, which efficiently

partitions the elements similar to quick-sort.

This chapter concludes with exercises and projects that foster deeper

understanding and practical application of sorting and selection algorithms,

including implementing animations and analyzing various algorithmic

strategies.

https://ohjcz-alternate.app.link/zWumPVSnuOb


https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 13 Summary: 13 Text Processing

Chapter 13: Text Processing

13.1 Abundance of Digitized Text

Text processing remains a dominant computer function due to the

exponential growth of digitized text data, which includes everything from

web snapshots and email archives to social media updates. As text data sets

can be immense—often surpassing petabytes—efficient analysis and

processing algorithms are essential. This chapter explores fundamental

algorithms that serve this purpose, alongside optimal algorithmic design

patterns. An examination begins with the pattern-matching algorithm,

advancing from brute-force methods to sophisticated algorithms like

Boyer-Moore and Knuth-Morris-Pratt. Also discussed are dynamic

programming techniques and text compression, each reducing storage needs

and transmission bandwidth, crucial for managing extensive text archives.

13.1.1 Notations for Strings and the Python str Class

To build algorithms for processing text, we model text as character strings

from various sources, such as scientific or internet data. Strings are

sequences of characters from known alphabets, where each alphabet size

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


impacts the performance analysis of text-processing algorithms. Python's str

class facilitates string operations, providing notation and methods to iterate

through substrings, prefixes, and suffixes to manipulate data efficiently.

13.2 Pattern-Matching Algorithms

This section covers algorithms that locate a pattern within a text string. The

brute-force algorithm examines all potential positions within the text for

possible matches, while more efficient algorithms, like Boyer-Moore and

Knuth-Morris-Pratt, leverage preprocessing of patterns or text to reduce

unnecessary comparisons. The Boyer-Moore algorithm introduces heuristics

to skip sections of text quickly, and the Knuth-Morris-Pratt algorithm uses

its failure function to avoid redundant checking by remembering previous

mismatches.

13.3 Dynamic Programming

Dynamic programming allows polynomial-time solutions for problems that

seem to necessitate exponential time. This approach divides a problem into

smaller subproblems and solves each optimally. The matrix chain-product

problem demonstrates this—a method for determining the most efficient

order to multiply a series of matrices, which can save significant

computational effort. Other examples include DNA and text similarity

problems, where algorithms compute the longest common subsequence

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


between strings.

13.4 Text Compression and the Greedy Method

Huffman coding is a method of text compression that uses variable-length

codes based on character frequency, significantly optimizing textual data

storage and transmission. It creates a binary tree, minimizing the space

needed by assigning shorter codes to more frequent characters. The greedy

method underlies Huffman's approach, prioritizing locally optimal choices

that lead to a globally optimal solution.

13.5 Tries

Tries are tree-based structures that facilitate pattern matching in fixed text

collections. By storing strings as paths from the root to leaf nodes, they

efficiently handle large collections of similar strings, supporting operations

like pattern and prefix matching. Standard tries can be enhanced into

compressed tries to reduce node redundancies, and further into suffix tries to

manage suffix patterns in strings. In search engine indexing, tries facilitate

fast information retrieval by organizing web pages into searchable structures.

---

This summary aims to provide an accessible entry point into the intricate

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


world of text processing, emphasizing how various algorithmic techniques

optimize handling the vast digital text landscape. Whether analyzing genetic

data, optimizing storage, or developing effective search engines, these

methods are crucial.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 14 Summary: 14 Graph Algorithms

Chapter 14: Graph Algorithms

14.1 Graphs:

Graphs model relationships between pairs of objects, represented as vertices

connected by edges. Applications range from mapping and computer

networks to modeling transportation routes and electrical circuits. Two types

of edges exist: directed, where an edge from u to v is ordered, and

undirected, where order does not matter. A graph G contains a vertex set V

and an edge collection E. Various graph terms are explored, such as the

degree of vertices and types of edges, including parallel edges in graphs

without parallel edges or self-loops, called simple graphs. Paths consist of

alternating vertices and edges, and cycles are paths starting and ending at the

same vertex.

14.1.1 The Graph ADT:

Graphs store vertices and edges using the Graph ADT, which includes

Vertex and Edge types and supports methods to manage graphs. Graphs can

be undirected or directed, and methods allow vertex and edge management,

degree calculation, and incident edge reporting.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


14.2 Data Structures for Graphs:

Several structures represent graphs differently:

- Edge List: Stores vertices and edges in lists but lacks efficient edge or

 incident edge searching.

- Adjacency List: Groups edges by vertex, using lists for incident edges.

 It efficiently finds incident edges.

- Adjacency Map: Similar to adjacency lists but uses maps for fast

 access to specific edges.

- Adjacency Matrix: Maintains an n x n matrix for fast edge access but

 requires O(n²) space.

14.3 Graph Traversals:

Graph traversals explore vertices and edges systematically. Key problems

include pathfinding, connectivity testing, and spanning tree computation.

Two traversal methods are:

- Depth-First Search (DFS): Visits nodes by advancing deep into the

 graph and backtracking. DFS can identify tree, back, forward, and cross

edges.

- Breadth-First Search (BFS): Explores layers of neighbors level by

 level, identifying shortest paths in terms of edge count.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


14.4 Transitive Closure:

The transitive closure of a graph shows path reachability. It can be computed

through repeated traversals or the Floyd-Warshall algorithm, which builds

reachability in O(n³) time using an adjacency matrix.

14.5 Directed Acyclic Graphs (DAGs):

DAGs lack cycles and model dependencies, such as task scheduling.

Topological ordering arranges vertices linearly, observing such that for edge

(vi, vj), i < j. An algorithm is given to produce a topological sort or detect

cycles.

14.6 Shortest Paths:

Weighted graphs use numeric labels for edges. Dijkstra’s algorithm finds

shortest paths from a source vertex by iteratively expanding a cloud of

vertices based on minimal path length. It handles graphs with no

negative-weight cycles and runs in O((n + m) log n) time.

14.7 Minimum Spanning Trees (MSTs):

MSTs connect all vertices with minimal edge weight sum. Two algorithms

are:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


- Prim-Jarník Algorithm: Uses a growing cluster from a root vertex to

 include the smallest edge connecting the cluster to an outside vertex.

- Kruskal’s Algorithm: Forms a spanning tree edge by edge, considering

 edges sorted by weight and ensuring no cycles are formed.

14.7.3 Disjoint Partitions and Union-Find Structures:

Efficient support for union and find operations is needed in Kruskal’s

algorithm, with data structures tracking disjoint sets using union-by-size and

path compression for optimal performance.

Chapter 14 covers fundamental graph algorithms, exploring both theoretical

concepts and practical implementations to solve critical problems of

connectivity, pathfinding, and graph structuring.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Critical Thinking

Key Point: Graph Traversals

Critical Interpretation: Imagine navigating through life's complex web

of relationships and experiences, reminiscent of traversing a graph. As

you explore the intricate connections and crossroads, the concept of

graph traversal, particularly Depth-First Search (DFS) and

Breadth-First Search (BFS), emerges as a profound metaphor. DFS, by

delving deep into uncharted paths before backtracking, mirrors the

courage needed to face life's uncertainties and challenges. It teaches

you the value of persistence, exploration, and reflection. In contrast,

BFS, which systematically explores levels of connections, embodies

strategic planning and patience. It helps you pursue goals by

understanding and leveraging incremental progress. Together, these

graph traversal techniques inspire a balance of curiosity, strategic

foresight, and resilience in navigating the complexities of personal

growth and relationships.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 15 Summary: 15 Memory Management and
B-Trees

Chapter 15: Memory Management and B-Trees

In computational systems, managing memory is as critical as optimizing

computations, especially when implementing data structures. Memory

management influences program performance due to operations involving

memory allocation, deallocation, and the handling of complex memory

hierarchies.

15.1 Memory Management

Computer memory is an array of words, each with a unique memory address.

To utilize this memory efficiently, techniques such as memory allocation and

garbage collection are employed. This chapter focuses on these aspects and

the Python interpreter's use of memory.

15.1.1 Memory Allocation

Python objects are stored in a memory pool known as the "Python heap,"

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


which the Python interpreter manages. Memory allocation involves storing

objects in 'blocks,' which are chunks of memory that can be variable in size.

Effective management aims to reduce fragmentation—both internal (unused

space within an allocated block) and external (unused space between

allocated blocks). Popular memory allocation strategies include:

- Best-fit: Allocates the smallest hole suitable for the request but often

 increases fragmentation.

- First-fit: Allocates the first available hole that fits the request.

- Next-fit: Similar to first-fit but continues searching from the last

 allocated block.

- Worst-fit: Allocates the largest available hole.

15.1.2 Garbage Collection

Python manages memory deallocation through garbage collection,

automatically reclaiming memory of objects no longer needed. Key

strategies include:

- Reference Counting: If an object’s reference count reaches zero, it can

 be collected.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


- Cycle Detection: Identifies and collects cyclic references among

 objects.

- Mark-Sweep Algorithm: Marks live objects reachable from root

 objects and collects unmarked ones.

15.1.3 Additional Memory Considerations

Beyond object memory, Python uses a call stack to manage function calls

and an operand stack for evaluating expressions, supporting recursion and

efficient expression evaluation.

15.2 Memory Hierarchies and Caching

With the growth of data-intensive applications, memory hierarchies

(registers, caches, main memory, and external storage) are crucial. Caching

strategies focus on maximizing access speed by keeping frequently accessed

data in faster, smaller memory components, utilizing concepts like:

- Temporal Locality: Data accessed recently is likely to be accessed again

 soon.

- Spatial Locality: Nearby memory locations are often accessed close

 together.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


15.2.1 Memory Systems

Memory levels range from registers (fastest, smallest) to external storage

(slowest, largest). Efficient data transfer between these levels minimizes

computational bottlenecks.

15.2.2 Caching Strategies

Caching involves storing copies of data in higher-level memory to reduce

access times. Effective caching strategies minimize external-memory

accesses, significantly impacting program performance. Various strategies

determine which data to evict—least recently used (LRU), first-in-first-out

(FIFO), or random.

15.3 External Searching and B-Trees

In scenarios involving external memory, like databases, minimizing disk

transfers is key. B-trees excel here, balancing fast access and updates by

organizing data in a multiway search tree. This structure extends binary

trees, providing efficient disk access through ordered and compact disk

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


block usage.

15.3.1 (a, b) Trees

An (a, b) tree is a multiway search tree, ensuring each node has between a

minimum and maximum number of children and keys. This flexibility

supports efficient external-memory organization.

15.3.2 B-Trees

B-trees optimize the (a, b) tree structure for external memory, aligning node

size with disk blocks to enhance search and update efficiency, requiring

minimal disk accesses.

15.4 External-Memory Sorting

Large datasets necessitate external-memory sorting, primarily achieved

through multiway merge-sort. By dividing data into manageable sections

and merging them efficiently using available memory, the sorting processes

optimally utilize disk accesses, keeping them minimal compared to element

comparisons.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


15.4.1 Multiway Merging

This technique merges multiple sorted sequences, utilizing available

memory blocks to minimize disk reads and writes, ensuring scalability for

large datasets.

Overall, understanding memory management, caching, and optimal data

structures like B-trees is crucial for developing efficient computer programs

handling large data sets within complex memory hierarchies.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Chapter 16: A Character Strings in Python

The appendix on character strings in Python provides a comprehensive look

 into various functionalities offered by Python's string class, known as `str`.

Strings in Python are sequences of characters defined by the Unicode

international character set, which extends the older ASCII character set to

include symbols from many languages. This makes strings vital for

processing text data, common in programming applications for input and

output.

String Operations Overview

The appendix organizes string functionalities into several categories:

1. Searching for Substrings: Strings support operations to find specific

 patterns within them. Using `pattern in s`, you can check the presence of a

substring in `s`. Methods like `s.find(pattern)` and `s.rfind(pattern)` return

the indices of the first and last occurrences of `pattern`, respectively. Others,

like `s.index(pattern)` and `s.rindex(pattern)`, will raise a `ValueError` if the

pattern is not found, making them slightly different from their `find`

counterparts.

2. Constructing Related Strings: Since strings in Python are immutable,

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


 methods such as `s.replace(old, new)` and `s.upper()` do not alter the

original string. Instead, they generate and return a modified copy. Other

methods like `s.ljust(width)` and `s.rjust(width)` adjust the string's width by

padding it with spaces (or other specified characters).

3. Testing Boolean Conditions: Python string methods like

 `s.startswith(pattern)` and `s.isdigit()` help verify properties about the

string. They check if a string starts or ends with a particular sequence, or

whether the string is composed of alphabetic, numeric, or whitespace

characters, among other checks.

4. Splitting and Joining Strings: These capabilities include methods like

 `sep.join(strings)`, which unites a sequence of strings with a separator, and

`s.split(sep)` that divides a string into a list based on a separator. These

operations are essential for string manipulation, allowing complex text

transformation and parsing tasks.

5. String Formatting: Python’s `format` method allows for the

 construction of complex strings by integrating variables with placeholders

marked by `{}` in a format string. You have control over the order and

formatting of inserted data, like setting widths, justifications, and numeric

precision. Advanced positioning within the format string can be achieved by

explicitly numbering placeholders or repeating arguments.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


In addition to these, the appendix touches on Python's rich formatting

options for numeric types including padding for date formats, and specifying

radix for integers (binary, octal, hexadecimal). Floating-point numbers can

be formatted to a fixed number of decimal places or switched between

fixed-point and scientific notation.

Overall, this appendix acts as a detailed reference guide for handling strings

in Python, demonstrating the flexibility and power of the `str` class in

supporting diverse text processing needs.

https://ohjcz-alternate.app.link/zWumPVSnuOb


https://ohjcz-alternate.app.link/LViWF8VnuOb
https://ohjcz-alternate.app.link/ICzfYbXnuOb


Chapter 17 Summary: B Useful Mathematical Facts

Appendix B of the book covers a range of mathematical fundamentals that

 are essential for understanding related concepts and applying them

effectively in problem-solving, particularly in computer science, data

structures, and algorithms. Here's a condensed but comprehensive summary:

Logarithms and Exponents  

The appendix starts by defining the logarithm: \( \log_b a = c \) if \( a = b^c

\), and lists key properties and identities of logarithms and exponents. These

identities allow simplifying expressions involving exponential or

logarithmic terms, which frequently appear in algorithmic time complexity

and computational analyses. For example, properties like \( \log_b(ac) =

\log_b a + \log_b c \) are crucial for breaking down complex calculations.

Inequalities  

Several propositions underline inequalities involving logarithmic or

exponential forms, providing bounds that simplify the handling of complex

expressions. For instance, Proposition B.2 offers bounds on the natural

logarithm \( \ln(1 + x) \), which are useful in series approximations across

various branches of mathematics and analysis.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


Integer Functions and Relations  

�D�e�f�i�n�i�t�i�o�n�s� �a�n�d� �p�r�o�p�e�r�t�i�e�s� �o�f� �m�a�t�h�e�m�a�t�i�c�a�l� �f�u�n�c�t�i�o�n�s� �s�u�c�h� �a�s� �t�h�e� �f�l�o�o�r� �(#
�x#��)

�a�n�d� �c�e�i�l�i�n�g� �(#��x#	�)� �f�u�n�c�t�i�o�n�s�,� �a�s� �w�e�l�l� �a�s� �t�h�e� �m�o�d�u�l�o� �o�p�e�r�a�t�i�o�n�,� �a�r�e� �d�i�s�c�u�s�s�e�d�.

These functions often facilitate discrete mathematics calculations, which are

core to algorithm development and analysis. Moreover, the factorial function

\( n! \) and the binomial coefficient, essential for combinatorial

computations, are detailed together with Stirling’s approximation, which

provides an estimate of large factorials.

Summations  

Summation formulas are crucial in algorithm analysis, especially when

dealing with loops and recursive algorithms. The appendix lists formulas for

simple and quadratic sums and geometric summations. Proposition B.11, for

example, provides the formula for computing the sum of squares of the first

n integers, which can be pivotal in evaluating performance metrics of

algorithms.

Basic Probability  

The appendix explores probability theory fundamentals, including the

definition of sample spaces, events, and probability spaces. Practical

examples, such as coin flips, elucidate finite and infinite sample spaces. It

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


introduces event independence and conditional probabilities—concepts vital

for designing and analyzing probabilistic algorithms and systems.

Random Variables and Expectation  

There is a discussion on random variables, with an emphasis on expected

value, helping evaluate the average outcome in probabilitic terms. For

example, if one were analyzing a probabilistic algorithm, understanding and

calculating the expected time complexity could be done using these rules.

Chernoff Bounds  

This section highlights techniques to bound probability distributions, which

are particularly useful in randomized algorithms where one seeks to bound

the likelihood of deviating from the expected value, thus providing

guarantees on performance with high probability.

Useful Mathematical Techniques  

The appendix concludes with mathematical techniques for comparing

growth rates, such as L'Hopital’s Rule, which helps evaluate limits and

asymptotic behaviors. Splitting and integrating summations serve as

strategies for bounding sums during analysis. The appendix also describes

the master method, a powerful tool for solving recurrence relations common

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


in the analysis of divide-and-conquer algorithms.

In essence, Appendix B equips readers with a solid foundation of

mathematical facts and methods necessary for sophisticated analysis and

understanding of algorithmic and data structure problems.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

