
Javascript By David Flanagan PDF
(Limited Copy)

David Flanagan

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Javascript By David Flanagan Summary
"Master Modern JavaScript: From Novice to Professional Power!"

Written by Books1

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the book

Embark on a journey through the dynamic universe of programming with

"JavaScript: The Definitive Guide" by David Flanagan—your ultimate

companion in mastering the art of JavaScript. This comprehensive book is

not just a textbook, but a gateway to understanding the subtle intricacies and

vast capabilities of this ever-evolving language that powers the web.

Flanagan artfully weaves together a tapestry of core concepts, from the

basics all the way to cutting-edge functionalities, presenting them with

clarity and insight that caters to aspiring coders and seasoned developers

alike. With real-world examples and a depth of knowledge that comes only

from years of experience and dedication, this guide invites you to delve into

the heart of web scripting, transcending mere code to unlock creativity and

innovation. Open these pages and prepare to transform the way you think

about the digital world—engage, code, create.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the author

David Flanagan is a distinguished author and software engineer renowned

for his expertise in JavaScript programming, among other technologies.

With a degree in computer science from the Massachusetts Institute of

Technology (MIT), Flanagan combines academic rigor with practical

insights in his writing. His seminal work, often dubbed the "JavaScript

Bible," has been a vital resource for developers and programmers seeking to

master the intricacies of the language. Over the years, Flanagan's clear,

authoritative, and comprehensive guides have not only educated countless

readers but have also helped shape the best practices in the software

development community. Beyond his prowess in writing, Flanagan

continues to contribute to the tech world through his various roles in

software development and consultancy, always staying at the forefront of

industry trends and technological advancements.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Summary Content List

Chapter 1: Section 1.1. Syntax

Chapter 2: Section 1.3. Data Types

Chapter 3: Section 1.4. Expressions and Operators

Chapter 4: Section 1.5. Statements

Chapter 5: Section 1.6. Object-Oriented JavaScript

Chapter 6: Section 1.7. Regular Expressions

Chapter 7: Section 1.8. Versions of JavaScript

Chapter 8: Section 2.1. JavaScript in HTML

Chapter 9: Section 2.2. The Window Object

Chapter 10: Section 2.3. The Document Object

Chapter 11: Section 2.4. The Legacy DOM

Chapter 12: Section 2.5. The W3C DOM

Chapter 13: Section 2.6. IE 4 DOM

Chapter 14: Section 2.7. DHTML: Scripting CSS Styles

Chapter 15: Section 2.8. Events and Event Handling

Chapter 16: Section 2.9. JavaScript Security Restrictions

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 17: Array

Chapter 18: Date

Chapter 19: Document

Chapter 20: Element

Chapter 21: Event

Chapter 22: Global

Chapter 23: Input

Chapter 24: Layer

Chapter 25: Link

Chapter 26: Math

Chapter 27: Navigator

Chapter 28: Node

Chapter 29: Number

Chapter 30: Object

Chapter 31: RegExp

Chapter 32: Select

Chapter 33: String

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 34: Style

Chapter 35: Window

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 1 Summary: Section 1.1. Syntax

Summary of JavaScript Syntax

JavaScript's syntax is heavily influenced by Java, which is itself based on C

and C++. As a result, programmers familiar with these languages will find

JavaScript syntax to be quite intuitive and familiar. This makes the transition

to learning and using JavaScript smoother for those with a background in

these languages.

Case Sensitivity

In JavaScript, case sensitivity is crucial, meaning that keywords must be

typed in lowercase. Similarly, variables, function names, and other

identifiers require consistent use of capitalization to be correctly recognized

by the language.

Whitespace

Whitespace in JavaScript, which includes spaces, tabs, and newlines, is not

interpreted, providing developers the flexibility to format code for

readability without impacting functionality.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Semicolons

Typically, JavaScript statements should end with a semicolon. However, in

cases where a statement is succeeded by a newline, the language allows the

semicolon to be omitted. Developers must be cautious when breaking lines,

as a statement cannot be split into two lines if the first line can stand alone as

a complete, legal statement.

Comments

JavaScript accommodates both C-style and C++-style comments. Text

between `/*` and `*/` is considered a multi-line comment, while text

following `//` until the end of a line is a single-line comment. This flexibility

aids in code documentation and clarity without affecting the execution of

code.

Identifiers

Identifiers in JavaScript are used for naming variables, functions, and labels.

They can contain letters, digits, underscores (_), and dollar signs ($), but

must not start with a digit. This ensures a wide range of possibilities for

naming elements in code, aiding in code organization and readability.

Keywords

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

JavaScript has a set of reserved keywords that carry special meanings within

the language. These include words like `break`, `function`, `return`, among

others. As these are reserved for language use, they cannot be repurposed as

identifiers in scripts. Additionally, certain words are reserved for future use,

which JavaScript developers should also avoid using as identifiers.

Understanding these fundamental aspects—case sensitivity, whitespace

handling, semicolon usage, commenting conventions, identifier rules, and

keyword restrictions—forms the basis for effectively writing and

understanding JavaScript. These conventions ensure code clarity,

maintainability, and compatibility with the broader ecosystem of JavaScript

and its parent languages.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 2 Summary: Section 1.3. Data Types

The chapter provides an overview of JavaScript's data types, categorized into

 primitive, compound, and specialized types. Primitive data types include

numbers, booleans, and strings, while compound data types are objects and

arrays. Let's explore these in detail:

1. Numbers:

 JavaScript represents numbers using a 64-bit floating-point format,

without distinguishing between integers and floating-point numbers.

Numbers can be written in decimal or hexadecimal notation (e.g., `0xFF` for

255). When operations overflow, results yield infinity, and underflows

return zero. If an operation like taking the square root of a negative number

produces an error, it returns `NaN` (Not-a-Number), testable with `isNaN()`.

The `Number` and `Math` objects bring numerical constants and

mathematical functions to JavaScript.

2. Booleans:

 Booleans have two values: `true` and `false`, representing binary states or

conditions.

3. Strings:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 A string in JavaScript is an immutable sequence of characters enclosed in

single or double quotes. Escape sequences, initiated with a backslash (`\`),

modify character meanings within strings; for example, `\n` inserts a

newline. Strings are compared by value, and operators like `+` for

concatenation and `==` for equality are used. JavaScript strings are

immutable; methods return modified copies rather than altering the original.

4. Objects:

 Objects are compound types with properties signified by name-value pairs.

Access properties using the dot operator (e.g., `o.x`) or array notation

(`o["x"]`). JavaScript's flexibility allows objects to obtain any properties

dynamically, unlike statically-typed languages like C++ or Java. Objects can

be instantiated via the `new` operator, predefined constructors, or using

object literal syntax, where properties are listed within braces.

5. Arrays:

 Arrays in JavaScript store numbered, rather than named, values starting

from index 0. Arrays are mutable, with their `length` property defining the

total elements. Arrays, which can contain various data types including

nested arrays and objects, are initialized using `Array()` or array literal

syntax (`[]`).

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

6. Functions and Methods:

 Functions, defined once, can be executed multiple times, with definitions

using `function` syntax and invocations requiring arguments. Functions can

be dynamically defined using the `Function()` constructor, although literal

syntax (`function(x,y)`) supersedes this in JavaScript 1.2 onwards. When a

function becomes an object's property, it is known as a method, with `this`

keyword representing that object within the method's context.

7. null and undefined:

 JavaScript includes `null`, indicating no value, and `undefined`, indicating

an uninitialized variable or nonexistent object property. Both serve specific

roles, with `==` equating them but `===` distinguishing between them.

This chapter provides foundational knowledge of JavaScript's data types,

necessary for understanding how data is represented and manipulated within

the language. Understanding these data types is key to effectively

programming in JavaScript.

Topic Description

Numbers JavaScript uses a 64-bit floating-point format for numbers, allowing

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Topic Description

decimal or hexadecimal notation. Operations may yield infinity or NaN for
errors; isNaN() helps identify such results. The Number and Math objects
are useful for constants and math functions.

Booleans Boolean data types represent binary states with the values: true and false.

Strings

 A string is an immutable sequence of characters enclosed within
quotes. Escape sequences start with a backslash. Strings are manipulated
via operators like + and ==, with methods returning modified copies instead
of changing originals.

Objects

 Objects store key-value pairs, accessed via dot operator or bracket
notation. They offer flexibility, accommodating dynamic property
assignment, unlike static languages. Created through the new operator,
constructors, or object literals.

Arrays
 Arrays hold numbered values starting from index 0. Mutable with a
length property, they can contain mixed data types and are initialized using
the Array() constructor or [] literals.

Functions
and
Methods

 Functions are reusable code blocks defined with function syntax,
dynamically with the Function() constructor, or as methods when tied to
objects. The this keyword refers to the owning object in methods.

null and
undefined

 null depicts absent values, while undefined signifies uninitialized
variables or absent properties. Both are non-equivalent using === but
equal with ==.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 3 Summary: Section 1.4. Expressions and
Operators

JavaScript expressions are fundamental building blocks of the language,

 constructed by combining various values through operators. These values

could be literals (such as numbers or strings), variables, object properties,

array elements, or function calls. Parentheses can be strategically employed

in expressions to modify the natural order of evaluation, ensuring the desired

outcome. Some basic examples include `1+2`, `total/n`, and `sum(o.x,

a[3])++`.

JavaScript is equipped with a comprehensive suite of operators that users

familiar with languages like C, C++, and Java will recognize. Operators in

JavaScript are ranked by precedence, which influences the order of

evaluation, and associativity, which determines the direction of operations

when operators of the same precedence appear together. Left-to-right

associativity is denoted by 'L', while right-to-left is denoted by 'R'.

Here's an overview of key operators in JavaScript, categorized by their

precedence levels:

1. Member operators like `.` (access object properties) and `[]` (access

 array elements) are evaluated first.

2. Function operators such as `()` for function invocation and `new` for

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 object creation follow next.

3. Unary operators like `++` (increment), `--` (decrement), `-` (negation),

 and `+` (no-op), along with bitwise (`~`) and logical (`!`) complements,

provide single-operand operations.

4. Arithmetic operators include `*`, `/`, `%` for multiplication, division,

 and remainder, respectively, and `+`, `-` for addition and subtraction.

5. Bit shift operators (`<<`, `>>`, `>>>`) shift bits left or right,

 considering sign and zero extension.

6. Relational operators such as `<`, `<=`, `>`, and `>=` determine value

 comparisons.

7. Equality operators `==` and `!=` perform loose comparisons, allowing

 type conversions, while `===` and `!==` enforce strict comparisons,

ensuring both value and type must match.

8. Logical operators like `&&` (AND), `||` (OR), and bitwise (`&`, `^`, `|`)

 facilitate logical operations.

9. Conditional (ternary) operator `?:` allows concise conditional

 expressions.

10. Assignment operators, including `=`, `+=`, `-=`, modify value

 assignments, sometimes in conjunction with arithmetic operations.

11. Comma operator `,` enables evaluating multiple expressions and

 returning the last one.

Some JavaScript-specific operators include:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- String operations: In JavaScript, the `+` operator also serves to

 concatenate strings. Equality operators test strings to see if they contain

identical characters, while relational operators assess them in alphabetical

order.

- typeof: This operator provides the data type of a given operand,

 returning types as strings like "number", "string", or "object".

- instanceof: Evaluates true if an object was created with a specified

 constructor function, like `Date`.

- in: Tests if a certain property exists in an object.

- delete: Removes an object property, differing from merely setting it to

 null, which just empties the value.

- void: Simply ignores its operand and evaluates to an undefined value.

By understanding these operators and their rules, JavaScript developers can

write more effective, accurate, and efficient code.

Category Description

Expressions Fundamental building blocks created by combining values using
operators. Values include literals, variables, and function calls.

Precedence &
Associativity

Operators are ranked by precedence (order of evaluation) and
associativity (direction of execution).

Member Access object properties with `.` and array elements with `[]`.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Category Description

Operators

Function
Operators Includes `()` for invocation and `new` for object creation.

Unary
Operators

Single-operand operations like increment `++`, decrement `--`, and
negation `-`.

Arithmetic
Operators

Includes multiplication `*`, division `/`, remainder `%`, addition `+`, and
subtraction `-`.

Bit Shift
Operators

Shift bits with `<<`, `>>`, and `>>>` considering sign and zero
extension.

Relational
Operators Compare values using `<`, `<=`, `>`, `>=`.

Equality
Operators Loose (`==`, `!=`) and strict (`===`, `!==`) comparisons.

Logical
Operators Perform logical operations with `&&`, `||`, `&`, `^`, `|`.

Conditional
(ternary)
Operator

Compact conditional expressions using `?:`.

Assignment
Operators Modify values with `=`, `+=`, `-=`, etc.

Comma
Operator Evaluate multiple expressions, returning the last one.

Special
JavaScript
Operators

 String `+`: Concatenate strings.
 `typeof`: Returns data type as a string.
 `instanceof`: Tests if an object instance is from a specific

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Category Description

constructor.
 `in`: Check if a property exists in an object.
 `delete`: Remove an object property.
 `void`: Evaluate an expression but return `undefined`.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 4: Section 1.5. Statements

Chapter 1.5 focuses on JavaScript statements, comparable in syntax to those

 used in languages like C, C++, and Java. A JavaScript program is

essentially a collection of these statements, playing crucial roles in scripting

by defining the logic and flow of execution.

Expression Statements (1.5.1)

JavaScript expressions serve as independent statements, where assigning a

value, invoking methods, or modifying variables are common operations.

Examples include simple assignments like `s = "hello world";`,

mathematical operations like `x = Math.sqrt(4);`, and incrementing a

variable using `x++;`.

Compound Statements (1.5.2)

Compound statements bundle multiple statements as one unit using curly

braces, `{ ... }`. This is particularly useful in loops or conditional statements

(like `if`, `for`). For instance, a `while` loop normally executes a single

statement but can be made to run several by employing a compound

statement.

Empty Statements (1.5.3)

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

An empty statement, denoted by a lone semicolon `;`, is purposeful for

constructing loops with no body. It essentially acts as a placeholder in

scenarios where code execution requires no action from the loop body itself.

Labeled Statements (1.5.4)

Introduced in JavaScript 1.2, labels can prefix any statement, facilitating

structured flow control when combined with `break` or `continue`. This

enables advanced control mechanisms over nested loops and complex

conditions.

Alphabetical Statement Reference (1.5.5)

A detailed exploration of various JavaScript statements follows, starting

alphabetically:

- break: This command exits the current loop or moves control out of a

 named loop, when paired with a label.

- case: Acts as a part of the `switch` construct, enabling branching based

 on distinct values.

- continue: Redirects loop control to the beginning, skipping subsequent

 statements and restarting the loop.

- default: Functions within `switch` structures, addressing unmatched

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 cases as a fallback path.

- do/while: Ensures loop execution at least once by testing the loop

 condition after the block of code is run.

- for: Combines initialization, condition-testing, and updating in a single

 loop statement.

- for/in: Iterates through an object's properties, essential for

 object-oriented scripting.

- function: Defines reusable blocks of code with named parameters, core

 to procedural programming.

- if/else: Implements branching logic, executing different code blocks

 based on boolean expressions.

- return: Exits a function and optionally passes back a value to the

 calling context.

- switch: Offers a clean method for multi-way branching, ideal for

 scenarios needing evaluations against multiple potential match cases.

- throw: Signals an error condition by creating exceptions, critical for

 robust program error handling.

- try/catch/finally: Manages exceptions, separating normal code

 execution (`try`) from error handling (`catch`), combined with `finally` to

execute code regardless of exceptions.

- var: Declares variables, supporting optional initialization, foundational

 for data management in JavaScript.

- while: Allows repeated execution of code blocks as long as a specified

 condition holds true.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- with: Temporarily extends the scope chain with an object property.

 However, its usage is discouraged due to unpredictable side effects.

This summary encapsulates fundamental JavaScript statements, illustrating

the structure control, logic branching, variable management, and error

processing necessary for effective programming in JavaScript.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 5 Summary: Section 1.6. Object-Oriented
JavaScript

The chapter "Object-Oriented JavaScript" provides an overview of how

 JavaScript, despite being a prototype-based language, can mimic traditional

object-oriented programming structures. In JavaScript, objects function as

associative arrays where values can be linked to named properties. This

dynamic language offers a straightforward inheritance mechanism, allowing

developers to create custom classes tailored to their applications.

To build a new class within JavaScript, one needs to define a constructor

function. This constructor resembles regular functions but is distinguished

by its invocation through the `new` operator. It initializes the new object's

properties using `this`. For instance, the snippet below demonstrates a

constructor for a `Point` class:

```javascript

function Point(x, y) {

  this.x = x; 

  this.y = y;

}

```

In the above example, objects representing points with `x` and `y`

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

coordinates are created.

A critical concept in JavaScript's object-oriented framework is the

`prototype`. Every constructor function in JavaScript has a `prototype`

property pointing to a prototype object. By defining properties or methods

on this prototype, they become available to all instances created by the

constructor. As an example, methods like `distanceTo` and `toString` are

added to the `Point` prototype to calculate the distance between points and to

convert the coordinate to a string format:

```javascript

Point.prototype.distanceTo = function(that) {

  var dx = this.x - that.x;

  var dy = this.y - that.y;

  return Math.sqrt(dx * dx + dy * dy);

}

Point.prototype.toString = function () {

  return '(' + this.x + ',' + this.y + ')';

}

```

For defining static properties or methods, which are associated with the class

itself and not with individual instances, they are directly assigned to the

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

constructor function. An example is defining a static `ORIGIN` property

representing a point at origin coordinates:

```javascript

Point.ORIGIN = new Point(0, 0);

```

These building blocks enable the formation of a functional `Point` class, as

demonstrated below:

```javascript

var p = new Point(3, 4);  // Creating a new Point instance

var d = p.distanceTo(Point.ORIGIN);  // Using a method with a static

property

var msg = "Distance to " + p + " is " + d;  // Implicitly calls toString()

```

Overall, this chapter highlights that JavaScript, through constructors and

prototypes, allows for efficient implementation of object-oriented concepts.

This understanding is crucial for developers looking to architect scalable and

reusable code in JavaScript-based applications.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Prototype-Based Inheritance

Critical Interpretation: Understanding prototype-based inheritance can

inspire you to realize that there are multiple approaches to

problem-solving. Just as JavaScript provides a unique way of creating

and managing objects without the rigid class structures of traditional

languages, you too can find innovative solutions to challenges in life.

Embrace flexibility by acknowledging that aligning with your unique

strengths and perspectives can lead to breakthroughs that are

unconventional yet highly effective. Harnessing the potential of

prototypes in JavaScript is a reminder that thinking outside of

conventional paradigms can unlock new doors to success.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 6 Summary: Section 1.7. Regular Expressions

1.7 Regular Expressions

Regular expressions are a powerful tool in JavaScript for pattern matching,

widely adopted from the syntax used in the Perl programming language.

JavaScript 1.2 introduced support for Perl 4 regular expressions, while

JavaScript 1.5 expanded this functionality by adopting some features from

Perl 5. A regular expression can be directly written in a JavaScript program

as a sequence of characters enclosed in slash (/) characters, followed by

possible modifier characters—`g` for a global search, `i` for case-insensitive

matching, and `m` for enabling multi-line mode, a feature added in

JavaScript 1.5. Additionally, you can create RegExp objects using the

`RegExp()` constructor, where both the pattern and modifiers are passed as

string arguments without the enclosing slashes.

While a comprehensive examination of regular expression syntax is beyond

the scope, the following sections provide concise summaries.

1.7.1 Literal Characters

In regular expressions, most letters, numbers, and characters match

themselves, known as literals. However, special meanings are ascribed to

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

certain punctuation characters and escape sequences (starting with `\`).

These escape sequences translate to literal characters:

- `\n`, `\r`, `\t`: Literal newline, carriage return, and tab.

- `\\`, `\/`, `*`, `\+`, `\?`: Literal punctuation characters.

- `\xnn`: Character with hexadecimal encoding `nn`.

- `\uxxxx`: Unicode character with hexadecimal encoding `xxxx`.

1.7.2 Character Classes

Square brackets define character sets or classes in regular expressions, with

additional escape sequences for common classes:

- `[abc]`: Matches any character a, b, or c.

- `[^abc]`: Matches any character except a, b, or c.

- `.`: Matches any character except newline.

- `\w`, `\W`: Match any word/non-word character.

- `\s`, `\S`: Match any whitespace/non-whitespace.

- `\d`, `\D`: Match any digit/non-digit.

1.7.3 Repetition

Repetition in regular expressions dictates the number of matches:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- `?`: Optional, match zero or one time.

- `+`: Match one or more times.

- `*`: Match zero or more times.

- `{n}`: Match exactly `n` times.

- `{n,}`: Match `n` or more times.

- `{n,m}`: Match between `n` and `m` times.

In JavaScript 1.5, a trailing question mark makes these greedy repetition

operators non-greedy, matching the fewest repetitions needed for a complete

pattern.

1.7.4 Grouping and Alternation

Parentheses group subexpressions, allowing repetitions over the group and

alternatives with `|`:

- `a|b`: Match either a or b.

- `(sub)`: Group the subexpression and save the matched text.

- `(?:sub)`: Group without remembering matched text (JS 1.5).

- `\n`: Match characters from the nth previously captured group.

- `$n`: In replacements, substitute text that matched the nth subexpression.

1.7.5 Anchoring Match Position

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Anchors specify string positions for matches:

- `^`, `$`: Match the start/end of a string, or in multiline mode, the start/end

of a line.

- `\b`, `\B`: Match at a word boundary/non-boundary.

- `(?=p)`: Positive lookahead, matches if subsequent characters fit `p` but

aren't included.

- `(?!p)`: Negative lookahead, matches if subsequent characters do not fit

`p`. (JavaScript 1.5)

These components provide the foundation for building complex

pattern-matching capabilities in JavaScript, enhancing its utility for string

processing tasks.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 7 Summary: Section 1.8. Versions of JavaScript

Summary of the JavaScript Versions and its Evolution

JavaScript, invented by Netscape, has evolved through numerous versions,

influenced by browser implementations like Microsoft's JScript and

standards defined by ECMA. Understanding these versions provides insight

into the language's progression and compatibility.

- JavaScript Versions by Netscape:

 - JavaScript 1.0: The inaugural version, laden with bugs, implemented

 by Netscape 2, is now considered obsolete.

 - JavaScript 1.1: Introduced the robust Array object and resolved

 many bugs. Implemented in Netscape 3.

 - JavaScript 1.2: Added constructs like the switch statement and

 regular expressions. Implemented in Netscape 4 with minor differences

from ECMA v1.

 - JavaScript 1.3: Aligned with ECMA v1, fixing previous

 incompatibilities, and implemented by Netscape 4.5.

 - JavaScript 1.4: Exclusive to Netscape server products.

 - JavaScript 1.5: Complied with ECMA v3 and introduced exception

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 handling. Used by Mozilla and Netscape 6.

- Microsoft’s JScript:

 - JScript 1.0-2.0: Paralleled early JavaScript versions and was

 implemented in IE 3.

 - JScript 3.0: Compliant with ECMA v1, akin to JavaScript 1.3, found

 in IE 4.

 - JScript 4.0: Not implemented by any browsers.

 - JScript 5.0-5.5: Introduced partial to full ECMA v3 compliance,

 implemented in Internet Explorer 5 to 6.

- ECMAScript Standards:

 - ECMA v1: Standardized JavaScript 1.1's key features, minus features

 like switch and regular expressions.

 - ECMA v2: Provided clarifications without new features.

 - ECMA v3: Standardized additional features including exception

 handling, making JavaScript 1.5 fully compliant.

JavaScript in HTML Documents

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

JavaScript can transform static HTML documents into dynamic experiences

through scripting embedded within HTML.

- Embedding JavaScript:

 - JavaScript code typically resides within `<script>` tags in HTML files.

The `src` attribute allows for external JavaScript files, usually ending with a

`.js` extension.

 - HTML supports scripts in languages other than JavaScript (such as

VBScript), which can be specified via the language or type attribute. Modern

HTML prefers the `type` attribute set to `text/javascript`.

- Event Handlers and JavaScript URLs:

 - JavaScript may be integrated as event handlers within HTML tags,

prefixed with "on" like `onclick`.

 - JavaScript URLs using `javascript:` protocol embed script execution

directly in hyperlinks.

The Window Object in Client-Side JavaScript

The Window object is central to client-side JavaScript, representing a web

browser window and acting as the global object for JavaScript execution.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- Key Features of the Window Object:

 - It allows for creating alert, confirm, and prompt dialog boxes.

 - Status lines in the browser can be dynamically set via the `status` and

`defaultStatus` properties.

 - Timers (`setTimeout` and `setInterval`) enable deferred and repeated code

execution.

 - Properties like `navigator` and `screen` detail browser-specific

information, aiding in adapting UI experiences.

 - Browser navigation techniques include altering the `location` property to

redirect or change document parts.

 - Methods for window control include resizing, scrolling, and

opening/closing windows.

The Document Object Model (DOM)

The Document object in JavaScript offers a programmatic access portal to a

web page’s structure and content.

- DOM Types:

 - Legacy DOM: Accessed key document parts like forms and images

 but was limited.

 - W3C DOM: A robust, standardized model from the World Wide Web

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 Consortium, offering full document manipulation capabilities.

- Accessing and Modifying Content:

 - Elements can be accessed using IDs (`getElementById`), tag names

(`getElementsByTagName`), and the `innerHTML` property allows for rapid

content manipulation.

 - The W3C DOM treats documents as a tree structure, enabling intricate

navigation and structure alteration capabilities through methods that add,

remove, or replace HTML elements and text.

DHTML and Advanced Event Handling

Dynamic HTML (DHTML) combines JavaScript with HTML and CSS to

create interactive web experiences.

- Dynamic Styles and Positioning:

 - Elements can be dynamically styled using the `style` property, and

positioning can be controlled through CSS attributes like `left`, `top`, and

`visibility`.

- Event Handling:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 - Provides numerous attributes for reactive behavior, such as `onclick` or

`onsubmit`, enabling versatile user interactions and form validation.

 - Event models differ across browsers, with three main models: W3C, IE,

and Netscape 4, each supporting different event handling features and

propagation methods.

JavaScript Security Considerations

JavaScript introduces security concerns that are mitigated through enforced

restrictions in browsers.

- Common Restrictions:

 - Scripts must adhere to the same-origin policy and are limited in file

manipulations and interaction with unrelated windows/documents.

 - Certain user actions, like form submissions via `mailto` or closing

non-created windows, require user confirmation.

 - Modern browsers extend these security constraints further to prevent

misuse by malicious actors, particularly in scripting behaviors that could

lead to intrusive popups or data breaches.

Comprehending these facets of JavaScript empowers developers to craft

secure, feature-rich web applications that function harmoniously across

various browsers while adhering to web standards.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 8: Section 2.1. JavaScript in HTML

Chapter 2.1 - Integrating JavaScript with HTML

JavaScript can be seamlessly embedded in HTML documents through

various methods such as scripts, event handlers, and URLs. These methods

enable dynamic content and interactivity on web pages.

2.1.1 The `<script>` Tag

In most HTML files, JavaScript scripts are enclosed within `<script>` tags.

This allows the browser to execute the JavaScript code. For instance:

```html

<script>

  document.write("The time is: " + new Date());

</script>

```

From JavaScript version 1.1 onwards, you can use the `src` attribute within a

`<script>` tag to link to external JavaScript files, which conventionally have

a `.js` extension. This mechanism enables developers to maintain cleaner

and more organized code by separating JavaScript from HTML. Even when

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

importing external scripts, the `<script>` tag remains necessary, as shown

below:

```html

<script src="external-script.js"></script>

```

While JavaScript is the default scripting language in web browsers,

technologies like VBScript are also supported by browsers like Internet

Explorer. The `language` attribute in the `<script>` tag specifies the scripting

language used. By default, this is JavaScript, so it typically doesn't need to

be set explicitly. This attribute can detail a specific JavaScript version, such

as "JavaScript1.3" or "JavaScript1.5", which guides browsers to either

execute or ignore the script depending on their support capabilities.

In HTML4, the `language` attribute isn't recognized officially; instead, the

`type` attribute serves this purpose. For JavaScript, you should set this

attribute to "text/javascript":

```html

<script src="functions.js" type="text/javascript"></script>

```

2.1.2 Event Handlers

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

JavaScript can also be implemented through event handlers within HTML

tags. Event handler attribute names typically start with "on". The script

specified by these attributes executes whenever the designated event occurs.

For example, the following HTML code creates a button. Its `onclick`

attribute contains a JavaScript alert that activates when the button is clicked:

```html

<button onclick="alert('Button clicked!')">Click me!</button>

```

These event handlers make the web page interactive by reacting to user

actions like mouse clicks, keyboard input, and more.

2.1.3 JavaScript URLs

JavaScript code can also appear directly in a URL by using the special

`javascript:` pseudo-protocol. When this URL is executed, the JavaScript

code is evaluated, and its result is converted into a string format. If the intent

is to execute code without displaying any new document content, utilize the

`void` operator to prevent replacing the entire document:

```html

<a href="javascript:void(alert('Hello World'));">Click me!</a>

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


```

This method retains document integrity while still leveraging the

functionality of JavaScript.

This chapter provides a basic understanding of incorporating JavaScript into

HTML, offering methods for straightforward to advanced implementations.

It highlights the flexibility and power of JavaScript in creating dynamic and

interactive web applications.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 9 Summary: Section 2.2. The Window Object

In chapter 2.2, the focus is on the Window object in client-side JavaScript,

 which plays a pivotal role in browser-based scripting by acting as the global

object for JavaScript execution. This essential object encompasses various

properties and methods that streamline web page interactivity and

functionality. Here, we unpack key features and uses of the Window object,

which shapes how scripts interact with the browser window.

2.2 The Window Object Overview

When working with web pages, the Window object serves as the top-level

global object in JavaScript, characterized by numerous properties and

methods that can be accessed globally—without an object prefix. Among its

most significant properties is the `document`, which refers to the Document

object containing all the HTML content displayed in the browser.

Subsequently, each section explores the essential methods and techniques

aligned with the Window object.

2.2.1 Simple Dialog Boxes

The Window object facilitates interacting with users through three main

types of dialog boxes:

- Alert: Displays a simple message (`alert("Welcome to my

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 homepage!");`).

- Confirm: Asks a yes-or-no question (`confirm("Do you want to

 play?")`).

- Prompt: Requests a single line of text input from the user

 (`prompt("Enter your name");`).

2.2.2 The Status Line

The `status` property allows scripts to modify the text displayed in the

browser's status line, typically located at the window's base. With the

`defaultStatus` property, default messages are set for instances where no

other statuses are displayed by the browser. Example usage involves setting

custom status text for hyperlinks or other interactive elements.

2.2.3 Timers

Timers introduce delayed actions or repeatedly execute code snippets. The

`setTimeout()` function triggers code execution after a specified time in

milliseconds, while `setInterval()` repeats execution with a defined interval.

These functions are essential for tasks like updating UI elements periodically

or scheduling actions, and they can be halted using `clearTimeout()` or

`clearInterval()`.

2.2.4 System Information

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

The Window object features `navigator` and `screen` properties, pointing to

the Navigator and Screen objects, which provide details about the browser's

and system's configurations, such as browser version or screen resolution.

This information is crucial for writing browser-specific scripts or optimizing

user experience across different environments.

2.2.5 Browser Navigation

The `location` property manipulates or retrieves the current URL from the

browser's location bar. Changing the `location` value prompts the browser to

load a new document. The `Location` object, despite appearing as a string,

contains properties to access various URL parts, and the `reload()` method

re-loads the current document. The `history` property accesses the browsing

history, allowing navigation via methods like `back()`, `forward()`, and

`go()`.

2.2.6 Window Control

Scripts can modify window behavior through methods that move, resize, or

scroll windows, and focus control with `focus()` and `blur()`. The `open()`

method generates new windows, and corresponding options like URL, name,

and window features, while `close()` terminates script-created windows.

Security settings in modern browsers may restrict these methods to limit

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

intrusive pop-ups.

2.2.7 Multiple Windows and Frames

Scripts can open multiple browser windows through the `open()` method,

with each window represented by a unique Window object. JavaScript treats

each HTML frame as a separate Window object, and the `frames` property

allows access to individual subframes. Moreover, properties like `parent`

and `top` enable scripts to traverse and manipulate the frame hierarchy. Each

window or frame spins its own JavaScript context, permitting interaction

across windows by accessing functions or variables defined in another

frame, frequently using the `top` reference to reach top-level scripts.

In essence, the Window object in JavaScript provides a foundation for

engaging with the web browser's UI and delivers mechanisms for creating

dynamic web experiences through its diverse properties and methods.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 10 Summary: Section 2.3. The Document Object

In understanding web development, the Document object plays a pivotal

 role, serving as a bridge between the browser display and the HTML

content it presents. While the Window object provides a container for the

browser window, the Document object specifically represents the HTML

document loaded within this window. The primary function of the

Document object is to facilitate access and modification of the document's

content, achieved through the document object model, or DOM.

The DOM is essentially an interface that allows programs and scripts to

dynamically access and update the content, structure, and style of

documents. Over the years, several versions of DOM have been developed:

1. Legacy DOM: This was the initial incarnation of the document object

 model, evolving alongside early JavaScript iterations. Although it is widely

supported by all browsers, its capabilities are limited to interacting with key

document elements like forms, form elements, and images. This DOM set

the foundation but did not provide comprehensive document access.

2. W3C DOM: Standardized by the World Wide Web Consortium, this

 version greatly expanded the capabilities of the DOM, granting access to all

parts of a document. It is at least partially supported by modern browsers

such as Netscape 6+, Internet Explorer 5+, and others. While not fully

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

compatible with the IE 4 DOM, it incorporates many aspects of the legacy

DOM. This model is the primary focus in educational materials, providing a

robust framework for JavaScript programmers.

3. IE 4 DOM: Introduced by Microsoft with Internet Explorer Version

 4, this DOM added advanced features to the legacy DOM, allowing for

more comprehensive document manipulation. However, these features were

not standardized and thus have limited support in browsers outside of

Microsoft's sphere.

In summary, each DOM version has contributed to the evolution of web

scripting, with the W3C DOM now serving as the widely accepted standard

that empowers developers to interact extensively with web document

content. The subsequent sections of the text delve deeper into the

applications of these DOMs, guiding readers on their usage to effectively

access and manipulate document data.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 11 Summary: Section 2.4. The Legacy DOM

In Chapter 2.4 titled "The Legacy DOM," the discussion centers around the

 original client-side JavaScript Document Object Model (DOM) and its

ability to provide structured access to document content through the

Document object. The legacy DOM, while foundational, has a narrower

scope compared to later standards. It offers several read-only properties like

`title`, `URL`, and `lastModified` that offer information about the entire

document.

The DOM in this context primarily interacts with document elements

categorized into arrays:

- forms[]: Refers to Form objects representing forms in a document.

- images[]: Comprises Image objects for the images in a document.

- applets[]: Represents embedded Java applets that can be controlled via

 JavaScript.

- links[]: Contains Link objects, corresponding to hyperlinks within the

 document.

- anchors[]: Holds Anchor objects that represent named positions

 marked by the HTML `<A>` tags.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

These arrays are indexed based on the order of elements in the document.

For more intuitive referencing, elements like forms, images, and applets can

also be accessed by assigning them unique names using the `name` attribute

in HTML. This allows for quick retrieval, exemplified with forms such as

`document.forms["address"]` which could be referred to simply as

`document.address`.

Particularly important is the Form object which possesses an `elements[]`

array. This array lists the form elements in sequence, enabling dynamic

access and manipulation. The methods to access these elements include

using index numbers or names, as illustrated by referencing an input

element.

However, the legacy DOM's functionality is limited to interactions with

forms, form elements, images, applets, links, and anchors, lacking

mechanisms to manipulate other content types like `<P>` tags or obtaining

the document text itself. This limitation is addressed in more advanced

DOM specifications by W3C and later browser versions.

Subsection 2.4.1 highlights the Document object's methods for generating

dynamic content, such as the `write()` method, which injects text at the

location of its containing `<script>` tags. When misused outside of

document loading events, it clears existing content, necessitating careful

application, especially when directing changes to other document windows.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Subsection 2.4.2 explores dynamic forms wherein the `elements[]` of a Form

object allows form elements to be updated, exemplified by a

JavaScript-driven clock updating a text input's display.

Subsection 2.4.3 discusses form validation, utilizing the `onsubmit` event

handler to ensure required fields are completed before submitting,

preventing submission if any field is empty by returning `false`.

Subsection 2.4.4 introduces image rollovers, a common dynamic effect

achieved by altering the `src` properties in the `images[]` array. This often

involves preloading images to reduce latency, achieved by creating

off-screen Image objects.

Lastly, Subsection 2.4.5 delves into cookies. Managed via the `cookie`

property of the Document object, cookies enable storing and retrieving small

pieces of data tied to the document. The chapter illustrates cookie creation,

including setting expiration for persistent cookies, querying cookies, and the

retrieval function that fetches a particular cookie's value.

Throughout, the chapter provides a glimpse into the foundational capabilities

and limits of the legacy DOM, while hinting at more advanced document

manipulation available in subsequent DOM specifications.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 12: Section 2.5. The W3C DOM

2.5 The W3C DOM

The W3C Document Object Model (DOM) standard represents a significant

advancement over the legacy DOM, as it not only encompasses prior

capabilities but also introduces new functionalities. It extends the ability to

interact with form elements, images, and other document properties by

providing methods to access and manipulate any document element, rather

than just specific ones.

2.5.1 Finding Elements by ID

To manipulate specific elements within a document via scripting, each

element can be assigned a unique `id`. This allows scripts to use the

`getElementById()` method of the Document object to directly target these

elements. For instance, to access an element with the ID "title," you simply

call:

```javascript

var t = document.getElementById("title");

```

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

2.5.2 Finding Elements by Tag Name

Elements can also be accessed through their tag names using the

`getElementsByTagName()` method. This returns an array of elements of the

specified type, enabling a more comprehensive interaction with the

document. For example, to access all `` elements:

```javascript

var lists = document.getElementsByTagName("ul");

var item = lists[1].getElementsByTagName("li")[2]; // Accessing the 3rd

<li> in the second <ul>

```

2.5.3 Traversing a Document Tree

The W3C DOM organizes documents as tree structures, where nodes

represent HTML tags, text strings, and comments, with each node

encapsulated in a JavaScript object. Traversal methods include

`parentNode`, `firstChild`, `nextSibling`, and `lastChild`, providing a

comprehensive framework for navigating and modifying the tree:

```javascript

var n = document.getElementById("mynode");

var p = n.parentNode;

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


var c0 = n.firstChild;

var c1 = c0.nextSibling;

var c2 = n.childNodes[2];

var last = n.lastChild;

```

The `documentElement` and `body` refer to the root `<html>` element and

the `<body>` element, respectively.

2.5.4 Node Types

Node types are distinguished by the `nodeType` property, dictating the kind

of node object it is:

- 1: Element (HTML tag)

- 2: Text (text in the document)

- 8: Comment (HTML comment)

- 9: Document (entire HTML document)

For Elements, `nodeName` retrieves the HTML tag's name, while

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

`nodeValue` accesses text or comment content. These distinctions are crucial

for handling various node types within the document.

2.5.5 HTML Attributes

HTML tags correlate to Element objects in a document tree. Each object's

properties directly map to the HTML attributes. For instance, the `caption`

property on an `` Element can be queried or set programmatically.

2.5.6 Manipulating Document Elements

Manipulating HTML documents often involves adjusting attribute-related

properties like `src` for images. A powerful method uses the `style` property

to control CSS styles, pivotal for dynamic styling and layout enhancements.

2.5.7 Changing Document Text

Document text can be altered through the `nodeValue` of a Text node.

Suppose you'd like to change the text content of an `<h1>`:

```javascript

var h1 = document.getElementsByTagName("h1")[0];

h1.firstChild.nodeValue = "New heading";

```

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

While manipulating `nodeValue` is straightforward, it assumes simple text

structure. When facing complex structures, leveraging `innerHTML` or

reconstructing nodes, as outlined in the following section, offers compatible

alternatives.

2.5.8 Changing Document Structure

The W3C DOM includes methods to alter a document's tree structure by

creating, appending, removing, and replacing nodes. For example:

```javascript

var list = document.getElementById("mylist");

var item = document.createElement("li");

list.appendChild(item);

var text = document.createTextNode("new item");

item.appendChild(text);

list.removeChild(item);

list.insertBefore(item,list.firstChild);

```

Such capabilities allow dynamic restructuring of HTML content, including

re-parenting elements, such as emboldening text:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


```javascript

function embolden(node) {

  var b = document.createElement("b");

  var p = n.parentNode;

  p.replaceChild(b, n);

  b.appendChild(n);

}

```

By understanding these concepts, developers gain the ability to effectively

manipulate and present web documents dynamically, thus enhancing user

interaction and experience.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 13 Summary: Section 2.6. IE 4 DOM

In the late 1990s, Microsoft introduced the IE 4 DOM with version 4 of its

 Internet Explorer browser, bringing a non-standard yet powerful way of

interacting with web documents. While later versions of Internet Explorer

supported many features of the standard W3C DOM, this section focuses on

understanding the uniqueness of the IE 4 DOM due to its continued use at

the time.

Accessing Document Elements

Unlike the W3C DOM that provides the straightforward `getElementById()`

method, the IE 4 DOM offers a different approach. It allows developers to

access document elements by their id attribute through the `all[]` array

within the document object. For example, you can retrieve an element with a

specific id using:

```javascript

var list = document.all["mylist"];

list = document.all.mylist;  // alternative syntax

```

Similarly, where the W3C DOM uses `getElementsByTagName()`, IE 4

introduces a `tags()` method on the `all[]` array, requiring tag names to be

specified in uppercase. This method simplifies accessing nested tags:

```javascript

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb


var lists = document.all.tags("UL");

var items = lists[0].all.tags("LI");

```

Traversing the Document Tree

Navigating a document's structure in IE 4 DOM parallels the W3C method

but with different property names. Instead of using `childNodes[]` and

`parentNode`, IE 4 uses `children[]` and `parentElement`. Notably, IE 4's

document tree excludes comments and text nodes within elements, handling

text content through two specific properties: `innerHTML` and `innerText`.

Modifying Document Content and Structure

IE 4 DOM documents consist of Element objects similar to those in the

W3C DOM, which allow querying and modification of HTML attributes.

Text within elements can be changed by setting the `innerText` property,

effectively replacing existing content. Although the IE 4 DOM doesn't

support node manipulation methods for creating or removing nodes, it does

offer the `innerHTML` property. This allows an element's content to be

replaced with a string of HTML, invoking the HTML parser and offering

ease of use over efficiency. The advent of `innerHTML` led to its adoption

in other browsers despite its non-standard origin.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Additionally, the IE 4 DOM features `outerHTML`, which replaces the

entire element, and methods like `insertAdjacentHTML()` and

`insertAdjacentText()`, though these are less common outside of Internet

Explorer.

DOM Compatibility

To ensure code compatibility across different browsers, including those

supporting the W3C DOM and others relying on the IE 4 DOM, developers

are advised to employ capability testing. This involves checking for the

presence of specific methods or properties before deciding which DOM

approach to use:

```javascript

if (document.getElementById) {

  // Utilize W3C DOM methods

} else if (document.all) {

  // Fall back to the IE 4 DOM

} else {

  // Resort to a legacy DOM approach

}

```

By understanding and cleverly navigating these differences, developers

could create more flexible and broadly compatible web scripts at the time.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 14 Summary: Section 2.7. DHTML: Scripting
CSS Styles

In Chapter 2.7, the concept of Dynamic HTML (DHTML) is explored,

 highlighting its ability to enhance web pages by combining HTML, CSS,

and JavaScript for dynamic modifications. DHTML allows for the dynamic

alteration of document elements' styles, which includes changing their

position and visibility using scripts. In web development, both the World

Wide Web Consortium (W3C) and Internet Explorer 4 Document Object

Models (DOMs) provide each document element with a style property. This

property is linked to a Style object that represents CSS attributes in a

structured manner, allowing developers to query or set CSS attributes

programmatically.

For example, to change an element's text color, if the element `e` has a CSS

`color` property, it can be accessed or modified via JavaScript as

`e.style.color`. JavaScript converts CSS properties that contain hyphens into

mixed-case properties, such as `background-color` becoming

`backgroundColor`. An exception to this rule is `float`, which is a reserved

JavaScript word, so it is referred to as `cssFloat`.

CSS provides an extensive array of properties to adjust the visual style of

documents, with a focus on positioning and visibility to enhance

interactivity. The position can be set to absolute, relative, fixed, or static,

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

with additional properties like top, left, width, and height defining the

element's dimensions and placement. The `visibility` and `display`

properties determine if and how elements are shown on the page.

DHTML animations can be achieved by dynamically updating these

properties over a sequence of frames. A utility function, `nextFrame`,

illustrates this concept by moving an element horizontally by 10 pixels every

50 milliseconds. The function continues updating the element's `left` style

attribute until a set number of frames, then hides the element using the

`visibility` property.

In a code demonstration, an element with ID "title" is animated by setting its

`position` to `absolute`, and then its `left` property is repeatedly adjusted.

Each adjustment is executed in a loop that triggers every 50 milliseconds

using JavaScript’s `setTimeout` function, emulating a simple animation.

After a predefined number of iterations, the element is hidden, showcasing

dynamic style manipulation in DHTML.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 15 Summary: Section 2.8. Events and Event
Handling

Chapter 2.8: Events and Event Handling

This chapter delves into the integration of client-side JavaScript within

HTML documents through event handler attributes in HTML tags. Event

handlers are interactive features in JavaScript used to respond to user

interactions such as clicks, form submissions, and more. The key to

understanding event handling is knowing the various types of event

attributes, which always start with "on" and can be applied to different

HTML tags. Each event handler responds to a specific interaction, for

example, `onclick` for mouse clicks, `onsubmit` for form submissions, and

`onload` for document loading.

2.8.1 Event Handlers as JavaScript Functions

Event handlers in HTML are represented as properties of JavaScript objects.

For example, an event handler for a form submission like `onsubmit` is

available in JavaScript as `document.forms[0].onsubmit`. Though event

handler attributes are strings of JavaScript code in HTML, in JavaScript they

are actually functions. Developers can define and assign these event handlers

as functions for better functionality, as demonstrated with a form validation

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

function.

2.8.2 Advanced Event Handling

Beyond basic event handling, there exist advanced models such as the W3C

DOM model, the Internet Explorer model, and the Netscape 4 model. These

event models introduce complexity and incompatibility across browsers,

making them challenging to implement universally.

Event Details: Advanced models enhance event detail accessibility. An

 `Event` object holds properties such as event type and mouse coordinates.

In W3C and Netscape models, it is directly passed to handlers. In IE's

model, it resides in the window’s event property. However, due to differing

property names across models, achieving cross-browser compatibility is a

challenge.

Event Propagation: Unlike the basic model where only the targeted

 element's handlers are triggered, advanced models support event

propagation. Events can "bubble" up or "capture" down the DOM tree. In

W3C and Netscape, events originate at the document level and move down,

while in IE and W3C, they also bubble up post-handling, allowing handlers

to manage events on parent elements. Handlers can also stop this

propagation but methods vary by model.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Event Handler Registration: The W3C model introduces

 `addEventListener()` for registering multiple handlers for a single event on

a document object, a functionality absent in simpler event models.

In summary, understanding and leveraging JavaScript event handling is

crucial for creating interactive web pages. While basic models offer

simplicity, advanced features provide greater control at the expense of

complexity, necessitating careful consideration of cross-browser

compatibility.

Section Description

2.8 Events and
Event Handling

Focuses on integrating JavaScript with HTML via event handler
attributes to respond to user interactions.

2.8.1 Event
Handlers as
JavaScript
Functions

Event handlers are properties of JavaScript objects, represented
as functions for more efficient interaction management.

2.8.2 Advanced
Event Handling

Describes complex event models (W3C DOM, IE, Netscape), the
handling for broader control with potential cross-browser
challenges.

Event Details Details held in an `Event` object with properties like type and
coordinates, but cross-browser differences exist.

Event Propagation Advanced models allow event bubbling and capturing through the
DOM tree, with varied methods to stop propagation.

Event Handler
Registration

The W3C model supports multiple handlers with
`addEventListener()`, unlike simpler models.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Description

Summary
JavaScript event handling is critical for interactive web design,
balancing simplicity and advanced controls while managing
cross-browser compatibility.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Event Propagation and its Dual Nature

Critical Interpretation: Understanding event propagation in JavaScript

offers you a unique perspective on how interconnected the layers of

interaction are, from the smallest click to the broader journey of user

experience. Similarly, life is a series of events, each influencing the

layers around it in subtle yet profound ways. By mastering event

propagation, you learn to appreciate how individual actions ripple

through wider ecosystems, and this revelation can inspire a greater

awareness of the impacts of your decisions on your environment.

Beyond code, it teaches you the importance of anticipating

consequences and planning for them—allowing growth from every

interaction and promoting a more harmonious connection with the

world around you.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 16: Section 2.9. JavaScript Security Restrictions

Chapter 2 details the intricacies and functionalities of client-side JavaScript,

 a language embedded within HTML to allow dynamic user interactions on

web pages. Central to this format is the event-driven architecture of

JavaScript, which means code is executed in response to various user

interactions within the browser. This client-side framework grants extensive

control over browser operations, such as interacting with the web document

and its contents, thus enhancing the user experience significantly.

However, with such capability comes potential security vulnerabilities. As

JavaScript executes directly in viewers' browsers, it has the potential to be

exploited, posing security risks not only to individuals but also to the

integrity of web applications. Recognizing these risks, typical browser

implementations impose several restrictions on what client-side scripts can

do.

One of the foundational security policies is the Same-Origin Policy, which

mandates that scripts can only interact with content that was loaded from the

same web server as the script itself. This limitation prevents cross-site

scripting (XSS) attacks, safeguarding user data by ensuring a script cannot

access information in documents from other servers. Furthermore, scripts are

restricted from setting the value property of file-upload elements, which

protects users from inadvertently exposing local files.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Additional measures include prohibiting scripts from automatically sending

emails or posting messages without user consent, which mitigates the risks

of spam and phishing attacks. Similarly, scripts are restricted in their ability

to close browser windows they did not open or to delve into cache to read

sensitive information. Activities such as generating pop-up windows without

user input have been curtailed in recent browser versions to enhance user

control and prevent intrusive experiences.

Due to the ever-evolving techniques used by advertisers and malicious

entities, these restrictions are not static. Newer browsers, like Mozilla 1.0,

even provide options for users to configure additional security settings.

These developments underscore the importance of maintaining script

limitations to balance functionality with security.

Overall, Chapter 2 introduces a powerful scripting tool in client-side

JavaScript alongside necessary security practices in browser design to

protect users and their data from abuses.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/LViWF8VnuOb
https://ohjcz-alternate.app.link/ICzfYbXnuOb

Chapter 17 Summary: Array

The text provides a comprehensive overview of arrays and their

 functionalities within JavaScript and its related scripting languages such as

JScript and ECMA Script. It details several aspects of arrays including their

creation, properties, and manipulation methods.

Array Creation and Manipulation:

Arrays in JavaScript can be created using the `new Array()` constructor. This

method allows for creating an empty array, an array with a specific number

of undefined elements, or an array with specified elements. Additionally,

starting from JavaScript 1.2, arrays can also be initialized using literal syntax

by placing a comma-separated list of expressions within square brackets,

such as `var a = [1, true, 'abc'];`.

Properties:

One key property of arrays is `length`, which indicates the number of

elements within the array. This property is dynamic and can extend the array

or truncate it by adjusting its value. It is especially useful when the array

lacks contiguous elements, providing the index of the last element plus one.

Methods:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Various methods enable manipulation and interaction with arrays. Some of

these include:

- `concat()`: Combines the original array with additional specified values or

elements from other arrays, returning a new array.

- `join()`: Converts each element of an array to a string and concatenates

them with a specified separator.

- `pop()`: Removes the last element, reducing the array's length, and returns

that element.

- `push()`: Adds specified values to the end of the array, returning the new

length.

- `reverse()`: Reorders the elements in reverse order within the array.

- `shift()`: Deletes the first element, moves other elements forward, and

returns the removed element.

- `slice()`: Extracts a section of the array and returns a new array without

modifying the original array.

- `sort()`: Arranges the array's elements in place, with an optional custom

sorting function.

- `splice()`: Modifies an array by deleting specified elements and/or inserting

new ones, returning the deleted elements in a separate array.

- `toLocaleString()`: Returns a localized string version of the array.

- `toString()`: Converts the array into a string representation.

- `unshift()`: Places new elements at the array's start, shifting existing

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

elements, and returning the updated length.

This text provides a foundational understanding of how arrays function

within JavaScript and related scripting languages, highlighting their

versatility through constructor methods, properties, and a wide array of

manipulation techniques. These features are essential for developers to

manage data collections effectively in their programs.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 18 Summary: Date

The Date object in JavaScript, first introduced in Core JavaScript 1.0 and

 JScript 1.0, and later standardized in ECMAScript v1, is designed to handle

operations related to dates and times. At its core, the Date object provides

several ways to create and manipulate date instances.

Constructors

1. New Date() Variants:

 - `new Date()`: This default constructor creates a Date object representing

the current date and time.

 - `new Date(milliseconds)`: Constructs a Date object using milliseconds

since the Unix epoch (January 1, 1970, 00:00:00 UTC). This timestamp is

obtained via the `getTime()` method.

 - `new Date(datestring)`: Parses a date string to create a Date object.

 - `new Date(year, month, day, hours, minutes, seconds, ms)`: Creates a

Date object with specified fields, where only the year and month are

mandatory.

2. Function Call:

 - Calling Date as a function without `new` returns the current date and time

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

as a string, ignoring any arguments.

Methods for Date and Time Retrieval

Date object methods enable accessing specific date and time components,

either in local time or universal time (UTC).

- `getDate() / getUTCDate()`: Retrieves the day of the month (1-31).

- `getDay() / getUTCDay()`: Retrieves the day of the week (0 for Sunday to

6 for Saturday).

- `getFullYear() / getUTCFullYear()`: Retrieves the full year (4 digits).

- `getHours() / getUTCHours()`: Retrieves the hour (0-23).

- `getMilliseconds() / getUTCMilliseconds()`: Retrieves the milliseconds.

- `getMinutes() / getUTCMinutes()`: Retrieves the minutes (0-59).

- `getMonth() / getUTCMonth()`: Retrieves the month (0 for January to 11

for December).

- `getSeconds() / getUTCSeconds()`: Retrieves the seconds (0-59).

- `getTime()`: Returns the millisecond representation of the Date.

- `getTimezoneOffset()`: Calculates the minute offset between the local time

and UTC.

- `getYear()`: Deprecated, use `getFullYear()`.

Methods for Date and Time Modification

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Date objects can also be manipulated via 'set' methods, each with both local

and UTC variants:

- `setDate() / setUTCDate(day_of_month)`: Sets the day of the month.

- `setFullYear() / setUTCFullYear(year, month, day)`: Sets the year, and

optionally the month and day.

- `setHours() / setUTCHours(hours, mins, secs, ms)`: Sets the hours, and

optionally minutes, seconds, milliseconds.

- `setMilliseconds() / setUTCMilliseconds(millis)`: Sets the milliseconds.

- `setMinutes() / setUTCMinutes(minutes, seconds, millis)`: Sets the

minutes, and optionally the seconds and milliseconds.

- `setMonth() / setUTCMonth(month, day)`: Sets the month, and optionally

the day.

- `setSeconds() / setUTCSeconds(seconds, millis)`: Sets the seconds, and

optionally the milliseconds.

- `setTime(milliseconds)`: Sets the Date using milliseconds since the epoch.

- `setYear(year)`: Deprecated, use `setFullYear()`.

String Representation Methods

The Date object provides methods to convert date objects to readable string

formats, respecting local and universal time conventions:

- `toDateString()`, `toGMTString()` (deprecated), `toLocaleDateString()`,

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

`toLocaleString()`, `toLocaleTimeString()`, `toString()`, `toTimeString()`,

`toUTCString()` provide various string formats based on local or universal

time preferences.

Static Methods

1. Date.parse(date): Interprets a date string, returning its millisecond

 representation.

2. Date.UTC(yr, mon, day, hr, min, sec, ms): Similar to constructing a

 Date in UTC format, returns the corresponding millisecond representation.

With these tools, JavaScript's Date object facilitates both simple and

complex manipulations of date and time, catering to a variety of application

requirements and allowing for local and universal time processing.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 19 Summary: Document

The chapter provides an in-depth look into the Document object, a crucial

 component of client-side JavaScript, introduced in JavaScript 1.0. This

object represents an HTML document and serves as a primary interface for

web scripting, offering developers the ability to interact with and manipulate

web pages.

The Document object is part of the broader Document Object Model

(DOM), which is a cross-platform and language-independent interface that

treats an HTML or XML document as a tree structure where each node is an

object representing a part of the document. This chapter touches on the

evolution of the Document object's properties and methods through various

versions of JavaScript and browser implementations by Netscape and

Internet Explorer (IE).

Key features of the Document object include:

1. Common Properties: These are foundational properties that all

 implementations support. Examples include `cookie` for managing cookies,

`domain` for security purposes, `forms[]` for accessing form elements, and

`URL` for retrieving the document's URL. Properties specific to earlier

JavaScript versions like `alinkColor`, `bgColor`, `fgColor`, etc., are also

mentioned, but they are now deprecated.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

2. W3C DOM Properties: The W3C standardized a set of properties like

 `body`, `defaultView`, and `documentElement`, expanding the functionality

to be consistent across different browsers.

3. IE and Netscape Specific Properties: Each of these browsers added

 non-standard properties like `activeElement` in IE and `layers[]` in

Netscape, which reflect the competition and fragmentation in early web

development environments.

4. Common Methods: Methods such as `open()`, `write()`, and `close()`

 are essential for document manipulation, allowing content to be

dynamically altered post-load.

5. W3C DOM Methods: Enhanced methods like `createElement()`,

 `getElementsByName()`, and `importNode()` promote dynamic content

creation and manipulation, aligning with modern web development

practices.

6. Netscape and IE Methods: Unique functions such as Netscape’s

 `getSelection()` and IE’s `elementFromPoint(x, y)` highlight

browser-specific innovations before standardization.

7. Event Handlers: The Document object supports event handlers like

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 `onload` and `onunload`, though they are typically implemented as part of

the Window object in practice.

In summary, this chapter outlines the critical role of the Document object in

web development, detailing its properties and methods, and how they

evolved through different JavaScript versions and browser implementations.

This underlines the complexities and advancements in client-side scripting

that have shaped today's web.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 20: Element

The chapter provides a detailed exploration of the `Element` object in web

 document models, focusing on its implementation across different browser

DOM standards. In web development, HTML elements are crucial

components represented by the `Element` object, which essentially acts as an

interface to interact with various tags in an HTML document. The chapter

distinguishes between the W3C DOM standard and the proprietary DOM

used by Internet Explorer (IE 4 and later), highlighting their differences in

method and property definitions.

For context, the DOM, or Document Object Model, represents the structure

of an HTML or XML document as a tree of objects, making it possible to

programmatically access and manipulate the document. By DOM Level 1,

the W3C (World Wide Web Consortium) standardized how this should work,

ensuring that developers could expect consistent behavior across different

web browsers. However, early implementations, like IE 4, adopted their

custom DOMs, leading to incompatibility issues.

W3C DOM Properties: In web browsers supporting the W3C DOM,

 HTML elements possess properties that mirror their HTML attributes,

facilitating easy access and manipulation. Notable attributes include `dir`,

`id`, `lang`, and `title`, which are mapped to JavaScript properties. Special

cases exist for attributes that are reserved words in JavaScript, like

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

`className` for the `class` attribute. Each element also inherits properties

from the Node object, such as `className`, `style`, and `tagName`.

IE DOM Properties: The proprietary DOM of Internet Explorer

 includes similar properties to the W3C standard but also extends

functionalities. For example, `innerHTML` and `innerText` enable

manipulation of an element's HTML and plain text contents respectively,

demonstrating non-standard but broadly adopted features. Additionally, the

`offset` properties (`offsetHeight`, `offsetLeft`, etc.) provide dimensions and

positioning details relative to container elements.

W3C DOM Methods: Methods such as `getAttribute()`, `setAttribute()`,

 and `removeAttribute()` allow managing attribute values efficiently. More

complex methods like `getElementsByTagName()` retrieve element

collections, facilitating operations on multiple nodes.

IE DOM Methods: Beyond standard methods, IE introduced custom

 approaches like `insertAdjacentHTML()`, allowing precise HTML insertion

in the DOM. This method takes positions like `BeforeBegin` or `AfterEnd`

to insert content relative to an element.

Event Handlers: HTML elements can handle user interactions through

 various event handlers, which trigger specific responses to user actions.

These include mouse events (`onclick`, `ondblclick`) and keyboard events

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

(`onkeydown`, `onkeyup`), among others, offering granular control over user

interactions.

The chapter also references related objects like `Form`, `Input`, and `Select`,

signifying other areas of the DOM where similar principles apply. This

overview advises developers to recognize compatibility challenges while

using these properties and methods across different browsers, ensuring wider

accessibility and functionality for web applications.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 21 Summary: Event

The Event object plays a crucial role in web development by providing

 details about events and offering control over their propagation. In the

world of web browsers, different versions and makers have historically used

different implementations of the Event object, leading to variations that

developers need to understand.

Overview of Event Object Implementations:

- DOM Level 2 Event Object: This is a standardized model that delivers

 uniformity across compliant browsers. However, it does not fully

standardize keyboard events, which means legacy browsers like Netscape 4

may still hold value for programmers targeting key events in older contexts.

- Internet Explorer (IE) 4-6: Uses a proprietary event model where the

 latest event is stored in the event property of the Window object, unlike the

DOM model which passes the Event object directly to event handlers.

- Netscape 4: Also adopts a proprietary model differing from IE and the

 DOM, offering unique properties especially relevant before DOM standards

gained widespread acceptance.

DOM Event Object Properties and Methods:

- Phases of Event Propagation: DOM Level 2 specifies three

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 phases—capturing, at target, and bubbling—captured respectively by

constants Event.CAPTURING_PHASE, Event.AT_TARGET, and

Event.BUBBLING_PHASE.

- Read-only Properties: Include event details like the Alt, Ctrl, Shift, and

 Meta keys status (e.g., `altKey`), coordinates (`clientX`/`clientY`,

`screenX`/`screenY`), the target node, and event type. These properties

enable understanding of the event's context and specifics.

- Methods: `preventDefault()` and `stopPropagation()` allow developers

 to manage how events behave, either by stopping the default action or

halting further event propagation.

Internet Explorer Specifics:

- Uses a bitmask for mouse buttons through the `button` property and

features unique fields like `cancelBubble` for stopping event propagation

and `returnValue` for overriding default actions.

- Coordinates are available through properties like `clientX`/`clientY` and

`screenX`/`screenY`.

Netscape 4 Specifics:

- Introduces the `modifiers` property for keyboard event details and

`pageX`/`pageY` coordinates relative to the entire web page.

- Utilizes a `which` property to signify which key or mouse button was

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

pressed, aiding in differentiation during keyboard and mouse interactions.

Understanding these various implementations is critical for web developers

dealing with cross-browser compatibility issues. The progression from

proprietary models in older browsers to standardized models like DOM

Level 2 reflects the ongoing evolution in web development practices aimed

at providing a cohesive, consistent developer experience.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 22 Summary: Global

The concept of the Global object in JavaScript is pivotal for understanding

 the language's core functioning. Serving as the top-tier object, the Global

object encompasses properties and methods that are accessible without

needing to reference any other object. This means when you define variables

and functions at the top level of your code, they essentially become part of

the Global object. While it doesn’t have an explicit name, you can refer to it

in non-method code with the keyword "this."

In client-side JavaScript, the Global object is represented by the Window

object, which comes with its own set of additional properties and methods

and can be accessed as "window."

Key global properties include:

- Infinity: A constant representing positive infinity, relevant from

 JavaScript 1.3, JScript 3.0, and ECMA v1.

- NaN (Not-a-Number): Represents a value that is not a number, also

 introduced with JavaScript 1.3, JScript 3.0, and ECMA v1.

Essential global functions build the groundwork for string manipulation and

numerical evaluations:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- URI Handling Functions:

 - `decodeURI()` and `decodeURIComponent()`: They decode encoded

URIs, turning hexadecimal escape sequences into characters, introduced in

JavaScript 1.5 and are part of ECMA v3.

 - `encodeURI()` and `encodeURIComponent()`: Encode URI components

to ensure special characters are preserved for safe transmission over URLs,

also from JavaScript 1.5 and ECMA v3.

 - `escape()` and `unescape()`: Used for encoding strings by replacing

certain characters with hexadecimal sequences. However, these are

deprecated as of ECMA v3 in favor of `encodeURI()` and

`decodeURIComponent()`.

- Numerical Functions:

 - `isFinite()`: Checks if a number is finite, excluding NaN or infinity, part

of JavaScript since 1.2.

 - `isNaN()`: Determines if a value is NaN, available since JavaScript 1.1.

 - `parseFloat()` and `parseInt()`: Convert strings to numbers, beginning in

JavaScript 1.0, with `parseInt()` allowing for specification of the number

base.

- Code Evaluation Function:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 - `eval()`: Executes a string of JavaScript code and returns the result,

though using eval should be done with caution due to potential security

risks.

Understanding these global properties and functions is crucial as they

provide foundational support for various JavaScript operations, enhancing

both string handling and numerical computations across applications. The

Window object, being an extension of the Global object in client-side

scripting, further expands the capabilities by incorporating additional

functionalities necessary for web development.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 23 Summary: Input

In "Client-side JavaScript 1.0," the chapter on the form input element delves

 into the various functionalities and characteristics that define how input

fields behave and interact within HTML forms. This section is essential for

understanding how user data is collected and processed in web applications.

Overview

The form input element inherits its properties and methods from the generic

Element object in the Document Object Model (DOM), meaning it shares

common functionalities with other HTML elements while also including

specific capabilities unique to form inputs.

Properties

1. Element Attributes: Each form input can have several attributes such

 as `maxLength`, `readOnly`, `size`, and `tabIndex`, each controlling

different aspects of user interaction and data entry.

2. Checked State: Input elements of type "checkbox" or "radio" have a

 `checked` property, which is a boolean reflecting if the element is selected

(true) or not (false). Related to this is `defaultChecked`, indicating the state

when the element is initially created or reset.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

3. Default and Current Value: The `defaultValue` property represents

 the initial text for input types "text" and "password", which appears when

first created or reset. For security reasons, the file input type's value is not

influenced by this property. The `value` property holds the current input

value sent upon submission, applicable to text, password, and file input

types, allowing data customization.

4. Type and Name: Input elements use the `type` property that defines

 their role within a form specified by the HTML "type" attribute. Common

types include "button", "checkbox", "file", "hidden", "image", "password",

"radio", "reset", "text", and "submit". The `name` property corresponds to

the HTML "name" attribute, vital for data handling on the server-side.

Methods

- Focus Control: Methods like `blur()` and `focus()` manage keyboard

 focus, affecting how users interact with form elements. The `select()`

method is used for text inputs to highlight the input text, enhancing user

experience during data manipulation.

- Simulated Interaction: The `click()` method mimics user interactions

 programmatically, primarily for button-type elements, aiding in automated

form handling and testing.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Event Handlers

Event handling is a crucial aspect, enabling developers to execute scripts

based on user interactions.

- Focus Events: `onblur` and `onfocus` track when an element gains or

 loses focus, providing hooks for additional visual or behavioral changes.

- Change and Click Events: `onchange` is specific to "text",

 "password", and "file" types and executes when users finalize their input

and move away from the field. `onclick` is tailored for button-type elements

to handle user clicks, which can be customized to prevent unnecessary form

submissions.

Conclusion

This chapter highlights how the input element interacts within a form

ecosystem, showcasing its flexibility and control in capturing user input

effectively. It integrates with other objects like Form, Option, Select, and

Textarea, to build intuitive and functionally rich web interfaces.

Understanding these attributes, properties, methods, and event handlers is

essential for web developers to harness the full potential of form inputs,

which are fundamental for user interactions in web applications.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 24: Layer

In the context of web development during the late 1990s, the "Layer" object

 in Netscape 4 was a unique concept aimed at facilitating the dynamic

positioning of HTML elements. Although this feature was exclusive to

Netscape 4 and became obsolete with the release of Netscape 6, its purpose

highlights the early efforts to enable dynamic content manipulation on web

pages. Back then, the Layer object primarily catered to developers wanting

to create or manage elements that could be positioned absolutely on a page

with JavaScript, offering a glimpse of the interactive web design

mechanisms that are commonplace today.

To create layers, developers could use the non-standard `<layer>` tag or the

Layer constructor in JavaScript. The Layer object emulated CSS positioning

semantics, representing any HTML element with a CSS 'position' attribute

set to 'absolute.' Despite its antiquated nature, understanding the properties

and methods associated with Layer shines a light on the evolution of web

standards and scripting practices.

Key properties of the Layer object included attributes like 'above' and

'below' to indicate stacking order, 'bgColor' for background color, and 'clip'

properties to specify clipping areas, allowing precise control over element

display. 'Hidden' and 'visibility' properties managed layer visibility, while

'left,' 'top,' (and their synonyms 'x,' 'y') determined the position relative to

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

other elements. Other properties such as 'name' and 'parentLayer' provided

details on element identification and hierarchy.

Methods enabled additional manipulation of these layers, such as 'load()' for

loading new content, 'moveAbove()' and 'moveBelow()' to alter stacking

order dynamically, and 'moveBy()' or 'moveTo()' for positioning

adjustments. 'ResizeBy()' and 'resizeTo()' offered capabilities to alter layer

dimensions programmatically.

Overall, the Netscape Layer object and its methods—a blend of properties

and functional operations—constituted a pivotal, albeit short-lived,

component in the early dynamics of web interfaces. Understanding Layer

provides historical insight into how web application interfaces have evolved

from proprietary solutions like Netscape's to more standardized approaches

adopted across modern browsers today.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 25 Summary: Link

The chapter on "Client-side JavaScript 1.0" introduces the Link object, an

 essential component in web development that inherits from the Element

class. This object allows developers to manipulate and access different parts

of a hyperlink's URL, which is fundamental in managing web navigation.

Synopsis

The Link object can be accessed using the `document.links[i]` method,

where `i` represents the index of a specific link within a document.

Properties

The discussed properties of a Link object revolve around various segments

of a URL, which is the web address pointing to a specific resource on the

internet. For illustrative purposes, we use a sample fictitious URL: `http://w

ww.oreilly.com:1234/catalog/search.html?q=JavaScript&m=10#results`.

1. hash: This property denotes the anchor part of the URL, which

 includes a leading hash (`#`). Example: `"#result"`.

2. host: This property encompasses both the hostname and port

 segments of a URL. Example: `"www.oreilly.com:1234"`.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

3. hostname: This purely specifies the hostname. Example:

 `"www.oreilly.com"`.

4. href: The comprehensive URL text is held within this property.

5. pathname: Refers to the path segment of the URL, signifying the

 resource location on the host server. Example: `"/catalog/search.html"`.

6. port: This string property indicates the port number, crucial for

 network requests. Example: `"1234"`.

7. protocol: Describes the communication protocol to be used. It

 includes the trailing colon. Example: `"http:"`.

8. search: This pertains to the query segment of a URL, which begins

 after the question mark and is used to pass parameters to the server.

Example: `"?q=JavaScript&m=10"`.

9. target: Specifies where the linked document should be displayed, such

 as in a new window or the current frame. Common values include special

targets like `"_blank"`, `"_top"`, `"_parent"`, and `"_self"`.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Event Handlers

- onclick: Triggered when a link is clicked. In JavaScript 1.1, it can stop

 the link from being followed by returning `false`.

- onmouseout: Fires when the mouse pointer leaves the link area.

 Introduced in JavaScript 1.1.

- onmouseover: Activated when a mouse hovers over the link. It can set

 the window's status property, and returning `true` will prevent the URL

from displaying in the status line.

Related Concepts

For further understanding of how the Link object interacts within the web

environment, one can also explore related objects such as Anchor and

Location. These provide additional functionality and context related to URL

management and browser navigation.

This summary provides a cohesive look at the mechanisms of manipulating

hyperlink properties on client-side JavaScript, vital for developing

interactive and navigable webpages.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 26 Summary: Math

The chapter on the Math object in JavaScript, specifically in the contexts of

 early versions like Core JavaScript 1.0, JScript 1.0, and ECMA v1, outlines

the foundational mathematical functions and constants available in the

language. The Math object serves as a namespace for these constants and

functions, grouping them together without defining a class or object

instantiation process. Unlike objects such as Date and String, Math does not

have a constructor, and its functionality is accessed directly via its properties

and functions.

Mathematical Constants

- Math.E: Represents the constant \(e \), which is the base of the natural

 logarithm.

- Math.LN10: Represents the natural logarithm of 10.

- Math.LN2: Represents the natural logarithm of 2.

- Math.LOG10E: Represents the base-10 logarithm of \(e \).

- Math.LOG2E: Represents the base-2 logarithm of \(e \).

- Math.PI: Represents the mathematical constant \(\pi \) (pi), central to

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 calculations involving circles.

- Math.SQRT1_2: Represents the reciprocal of the square root of 2.

- Math.SQRT2: Represents the square root of 2.

Mathematical Functions

The Math object provides several functions critical for performing

mathematical operations:

- Math.abs(x): Computes the absolute value of \(x \), effectively

 removing any negative sign.

- Math.acos(x): Returns the arc cosine of \(x \), producing a result in

 radians between 0 and \(\pi \).

- Math.asin(x): Calculates the arc sine of \(x \), with the result in

 radians between \(-\pi/2\) and \(\pi/2\).

- Math.atan(x): Provides the arc tangent of \(x \), returning a value

 between \(-\pi/2\) and \(\pi/2\) radians.

- Math.atan2(y, x): Returns the angle in radians between the positive

 X-axis and the point (\(x\), \(y\)), useful in determining direction.

- Math.ceil(x): Rounds \(x \) up to the nearest integer.

- Math.cos(x): Computes the cosine of \(x \), the angle in radians.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- Math.exp(x): Calculates \(e \) raised to the power of \(x \).

- Math.floor(x): Rounds \(x \) down to the nearest integer.

- Math.log(x): Gives the natural logarithm (base \(e \)) of \(x \).

- Math.max(...args): Determines the largest value among the arguments

 provided. If no arguments are supplied, returns \(-\infty\). If any argument is

NaN or non-numeric and cannot be converted, it returns NaN.

- Math.min(...args): Identifies the smallest value among the arguments.

 With no arguments, it returns \(\infty\). Similar to Math.max, if any

argument is NaN, it returns NaN.

- Math.pow(x, y): Computes \(x \) raised to the power of \(y \).

- Math.random(): Generates a pseudo-random floating-point number

 between 0.0 (inclusive) and 1.0 (exclusive).

- Math.round(x): Rounds \(x \) to the nearest integer.

- Math.sin(x): Returns the sine of \(x \), with \(x \) given in radians.

- Math.sqrt(x): Returns the square root of \(x \). If \(x \) is negative, it

 returns NaN, signifying an invalid operation.

- Math.tan(x): Computes the tangent of \(x \).

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Background Context

The Math object and its functions are crucial for performing a wide range of

calculations in programming tasks, from simple arithmetic to complex

algorithms. Understanding these functions allows developers to utilize

JavaScript effectively for numerical computations in web development and

beyond. This lays the groundwork for more sophisticated mathematical

operations and provides a bridge to more extensive numerical libraries and

functionalities developed in later versions of JavaScript.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 27 Summary: Navigator

The chapter focuses on the Navigator object in client-side JavaScript 1.0,

 which contains vital information about the user's web browser. This object

is an important part of JavaScript that lets developers access properties that

describe the environment where their scripts are operating. It is crucial for

creating web applications that can customize user experiences based on the

browser and system information.

Firstly, the chapter explores key properties of the Navigator object:

- appCodeName: This is a read-only string property that specifies a

 nickname for the browser, typically set to "Mozilla" for compatibility

purposes across both Netscape and Microsoft browsers. Historically,

"Mozilla" is rooted in the early internet era when Netscape Navigator was a

dominant web browser.

- appName: Another read-only property providing the browser's name.

 For instance, the value for Netscape browsers is "Netscape," whereas for

Microsoft's Internet Explorer, it's "Microsoft Internet Explorer."

- appVersion: This property gives version and platform information

 about the browser as a string. The major and minor version numbers can be

extracted using JavaScript functions `parseInt()` and `parseFloat()`,

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

respectively. However, this string can vary significantly between different

browsers, which can be a challenge for developers aiming for consistent

functionality across multiple platforms.

- cookieEnabled: A boolean value indicating whether cookies are

 enabled, which is crucial for handling user sessions and storing small

amounts of data locally on the client side. This feature came into play with

IE 4 and Netscape 6 browsers.

- language: This property denotes the browser's default language using

 a two-letter language code, like "en" for English, or a five-letter code

indicating a regional variant, such as "fr_CA" for Canadian French.

- platform: It describes the operating system and/or hardware platform

 running the browser, with possible values like "Win32," "MacPPC," and

"Linux i586." This property became available with JavaScript 1.2.

- systemLanguage: Specific to IE 4, it indicates the default language of

 the operating system.

- userAgent: This property represents the user-agent header's value sent

 with HTTP requests. It typically combines the values of `appCodeName`

and `appVersion`, providing context about the browser that can be used for

analytics, content negotiation, or tracking purposes.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- userLanguage: Another IE-specific property similar to `language`,

 detailing the user's preferred language.

The chapter also mentions the `javaEnabled()` method, which checks if Java

is supported and enabled in the browser, returning a boolean. This

functionality became part of JavaScript with version 1.1 and is essential for

web applications that rely on Java applets.

Finally, the Navigator object is closely associated with the `Screen` object,

which provides additional information about the client's display. These

elements together form the backbone of client-side detection, an aspect of

JavaScript used to ensure web applications can adapt to various user

environments, offering a seamless user experience.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 28: Node

The chapter provides an overview of the Node interface in the Document

 Object Model (DOM) Level 1, which is a programming interface for web

documents. The Node interface is fundamental as it represents any object

within a document tree. Subclasses of Node include Attr, Comment,

Document, DocumentFragment, Element, and Text, each serving different

roles in the DOM structure.

Node objects have a critical property named `nodeType` that determines

which type of Node subclass an instance is part of. There are specific

constants for `nodeType` values, such as ELEMENT_NODE (1),

ATTRIBUTE_NODE (2), TEXT_NODE (3), COMMENT_NODE (8),

DOCUMENT_NODE (9), and DOCUMENT_FRAGMENT_NODE (11).

These constants help categorize the various node types, particularly in

browsers like Internet Explorer versions 4 through 6, where specific integer

literals are required.

Nodes have several key properties:

- `attributes`: An array for Element nodes, containing its attributes.

- `childNodes`: An array of Node objects that are children of the current

node.

- `firstChild` and `lastChild`: Refer to the first and last child nodes,

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

respectively.

- `nextSibling` and `previousSibling`: Refer to subsequent and preceding

sibling nodes within the same parent.

- `nodeName`: Provides the name of the node, such as the tag name for

Element nodes or the attribute name for Attr nodes.

- `nodeValue`: Stores the content of the node, applicable mainly to Text,

Comment, and Attr nodes.

- `ownerDocument`: References the Document object the node belongs to,

null for Document nodes.

- `parentNode`: Points to the parent node, which is never applicable for

Document and Attr nodes.

The chapter also highlights various methods available to Node objects:

- `addEventListener` and `removeEventListener`: Manage event listeners for

node interactions, not supported in early Internet Explorer versions.

- `appendChild` and `insertBefore`: Modify the document tree by adding

nodes.

- `cloneNode`: Duplicates the node, with an option to copy its children.

- `hasAttributes` and `hasChildNodes`: Check for the presence of attributes

or child nodes, respectively.

- `isSupported`: Tests compatibility of specific features.

- `normalize`: Merges adjacent Text nodes and removes empty ones.

- `removeChild` and `replaceChild`: Handle the removal or replacement of

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

child nodes in the document tree.

This framework and functionality portrayed in the chapter are essential for

understanding how web documents are structured and manipulated,

providing the foundation for dynamic web applications. Understanding the

Node interface is crucial for web developers to effectively interact with and

alter the structure of web pages programmatically.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 29 Summary: Number

This chapter delves into the representation and manipulation of numbers in

 various JavaScript versions, such as Core JavaScript 1.1, JScript 2.0, and

ECMA version 1.0. A comprehensive understanding of numbers is crucial in

JavaScript as they form the basis for a wide range of applications and

functionalities in programming.

The process of creating numbers in JavaScript involves constructors, either

with or without using the `new` keyword. Using `new Number(value)`, the

constructor converts an argument into a numeric value encapsulated within a

new Number object. Conversely, without `new`, the `Number(value)`

function merely converts the argument into a numeric value and returns it.

JavaScript provides several constants related to numbers through the

Number object itself rather than individual number instances. These include:

- Number.MAX_VALUE: Represents the largest number that can be

 handled, roughly 1.79E+308.

- Number.MIN_VALUE: Represents the smallest positive number,

 approximately 5E-324.

- Number.NaN: Denotes a value that is "Not-a-Number," akin to the

 global NaN.

- Number.NEGATIVE_INFINITY and Number.POSITIVE_INFINITY:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Represent infinite values, where the latter is synonymous with the global

Infinity.

JavaScript also includes several methods for formatting and manipulating

numbers:

- toExponential(digits): Converts a number into a string using

 exponential notation with a specified number of digits after the decimal

point. This method caters to numbers requiring scientific representation,

providing flexibility between 0 to 20 digits.

- toFixed(digits): This method returns a string representation with a

 fixed number of digits after the decimal point, rounding or padding as

necessary, within a range of 0 to 20 digits. It's valuable for displaying

monetary or precise decimal values.

- toLocaleString(): Offers a locale-sensitive string representation of a

 number. It considers local conventions like decimal and thousands

separators to provide culturally relevant numerical formats.

- toPrecision(precision): Converts a number into a string with a

 specified number of significant digits, switching between fixed-point and

exponential notation depending on the input. Precision must be between 1

and 21.

- toString(radix): Transforms a number into a string using a specified

 base between 2 and 36, falling back to base 10 if omitted. This is

particularly useful for converting numbers into different numeral systems.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Understanding these features and how to manipulate numbers gives

developers powerful tools to handle any number-related tasks efficiently

across diverse applications. The chapter also alludes to related mathematical

operations provided under the `Math` object, emphasizing the intertwined

nature of numerical manipulation and mathematical operations in

programming.

Topic Details

Number
Representation

Discusses number handling in JavaScript versions like Core
JavaScript 1.1, JScript 2.0, and ECMA version 1.0.

Number Constructors Creating numbers using `new Number(value)` for
encapsulation and `Number(value)` for direct conversion.

Number Constants
Includes important constants such as MAX_VALUE,
MIN_VALUE, NaN, NEGATIVE_INFINITY, and
POSITIVE_INFINITY.

Method:
toExponential(digits)

Converts numbers to strings in exponential notation with
specified digits.

Method:
toFixed(digits)

Returns a string with a fixed number of digits, useful for
monetary values.

Method:
toLocaleString() Provides locale-sensitive numeric formatting.

Method:
toPrecision(precision)

Allows conversion with a specified number of significant digits,
using fixed or exponential formats.

Method:
toString(radix)

Converts a number to a string using a specified base, useful for
numeral systems.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Topic Details

Relation to Math
Object

Emphasizes the link between numerical manipulation and the
`Math` object for related operations.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 30 Summary: Object

In this chapter, we explore the foundational role of objects in JavaScript

 programming, detailing their properties, methods, and importance. In

JavaScript, objects serve as the superclass for all other objects, forming the

backbone of numerous built-in and custom functionalities. The `Object`

constructor creates an empty object—which acts as a blank canvas—that can

be customized with various properties.

Each object in JavaScript, regardless of its method of creation, inherently

possesses certain properties and methods. One essential property is the

`constructor`, which links back to the JavaScript function that originally

created the object. This establishes a connection to the object's prototype,

ensuring consistent behavior and structure across instances.

Several pivotal methods are intrinsic to all JavaScript objects:

1. hasOwnProperty(propname): This method checks whether an object

 directly contains a specified property without inheriting it from a prototype.

It returns true for non-inherited properties and false otherwise. This

functionality is instrumental in distinguishing between properties that belong

to the object itself and those inherited through the prototype chain.

2. isPrototypeOf(o): This method verifies if an object exists in the

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 prototype chain of another object, `o`. It returns true if the object is a

prototype of `o`, which is essential for understanding the inheritance and

structural relationships between objects.

3. propertyIsEnumerable(propname): This checks if a particular

 property is both an own property and enumerable. Enumeration enables the

property to be iterated over in `for/in` loops, making it crucial for object

iteration purposes.

4. toLocaleString(): This method provides a locale-sensitive string

 representation of the object. By default, it references the `toString()`

method, but subclasses can override it to adapt string representations based

on locale-specific standards, enhancing user experience in different

geographical contexts.

5. toString(): Each object has a generic `toString()` method that presents

 a string representation of the object. While this basic implementation is

often not informative, subclasses typically override it to yield more

user-friendly outputs.

6. valueOf(): This method returns the primitive value of the object when

 applicable. For generic objects, it merely returns the object itself, though

subclasses such as `Number` and `Boolean` override it to provide

meaningful primitive values.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

This foundational knowledge sets the stage for effectively leveraging

JavaScript's versatile and dynamic object-oriented capabilities. It paves the

way for understanding more complex types including `Array`, `Boolean`,

`Function`, `Number`, and `String`, each building upon the Object superclass

while introducing specific behaviors. This framework is vital for both novice

programmers and seasoned developers, offering a structured yet flexible

approach to JavaScript coding.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 31 Summary: RegExp

Regular Expressions in JavaScript

JavaScript is a versatile programming language that offers various features

for developers, one of which is the use of regular expressions (RegExp) for

pattern matching. RegExp is essential for performing complex searches, text

manipulations, and string validations. This chapter provides an overview of

RegExp, focusing on its syntax, properties, and methods while offering a

brief context on their application.

Syntax and Construction

In JavaScript, regular expressions can be expressed using two syntaxes:

literal and constructor. The literal syntax is straightforward, written as

`/pattern/attributes`, where the `pattern` represents the search criteria, and

`attributes` modify the behavior of the search (e.g., global, case-insensitive).

The constructor method uses `new RegExp(pattern, attributes)`, allowing

programmatic creation of patterns. Both approaches are derived from

complex grammar rules discussed earlier in the book, providing developers

with flexible and powerful tools for text processing.

Instance Properties

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Regular expressions in JavaScript have several key properties:

- global: A read-only boolean indicating if the `g` attribute is used.

 When set, the RegExp performs searches across the entire string, not just

stopping at the first match.

- ignoreCase: Another read-only boolean that specifies if the `i` attribute

 is included, enabling case-insensitive pattern matching to broaden search

capabilities.

- lastIndex: This property, exclusive to global RegExp objects, is

 read/write and indicates the character position right after the last match

found, facilitating continuous searching through a text.

- multiline: Set by the presence of the `m` attribute, this read-only

 boolean allows the RegExp to search across multiple lines in a text,

matching a broader array of string patterns.

- source: A read-only string, `source` holds the textual pattern of the

 RegExp, excluding the delimiters and flags, offering a clear view of the

expressed regular expression.

Methods

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Two principal methods extend the functionality of regular expressions:

- exec(string): This method runs a search within the specified `string` for

 the pattern defined in the RegExp. Upon finding a match, it returns an array

with the full matched text and any sub-matches within subexpressions. If no

match is found, it returns `null`, while the `array` also features an `index`

property that specifies where the match starts.

- test(string): It evaluates whether the RegExp pattern exists within the

 given `string`. If a match is found, the method returns `true`; otherwise, it

returns `false`, aiding quick validation checks.

Application References

For further exploration of text processing, the chapter references associated

string methods such as `String.match()`, `String.replace()`, and

`String.search()`. These methods allow deeper text manipulation using

regular expressions, expanding the potential use cases in web development

and text parsing tasks.

In summary, regular expressions offer developers a robust set of tools for

intricate pattern matching in JavaScript. By understanding their syntax,

properties, and methods, developers can effectively validate, search, and

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

manipulate strings to meet various programming needs.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 32: Select

In the realm of Client-side JavaScript 1.0, specifically focusing on the Select

 object, we explore a graphical selection list represented in HTML as the

<select> tag. This object expands from the basic Element type and provides

functionality to interact with form elements in web development.

Understanding the Select object is crucial because it defines key properties

and methods for managing dropdown or multi-select lists on web pages.

The Select object incorporates various properties that mirror the attributes of

the HTML <select> tag, such as `disabled`, `multiple`, `name`, and `size`.

These properties allow developers to configure the behavior and appearance

of selection lists. In-depth properties include:

- `form`: This is a read-only property pointing to the Form object that

contains the Select element, establishing a relationship between the form and

its elements.

- `length`: Represents a read-only integer indicating the total options

available in the selection list, equivalent to `options.length`.

- `options[]`: An array consisting of Option objects, each describing a choice

within the Select element. Developers can modify this array dynamically by

adjusting the `options.length` to add or reduce options. They can also append

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

new options using the Option() constructor, or remove existing ones by

setting their array element to null, effectively reshaping the options

available.

- `selectedIndex`: This read/write integer identifies the currently selected

option index. If no option is selected, the value is -1. Only the first selected

index is recorded when multiple selections occur. Altering this index

programmatically deselects all other options.

- `type`: A read-only string that identifies whether the Select object allows

single ("select-one") or multiple ("select-multiple") selections, based on

whether the `multiple` attribute is omitted or included.

The methods provided by the Select object enhance interactive capabilities,

including:

- `add(new, old)`: Inserts a new option into the options array before a

specified option. If the specified option is null, the new option is appended

at the end.

- `blur()`: Removes keyboard focus, crucial for managing user interactions.

- `focus()`: Captures keyboard focus, allowing for user interaction with the

selection list.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- `remove(n)`: Deletes the nth option from the options array, providing a

way to manage dynamic content within forms.

Event handlers like `onblur`, `onchange`, and `onfocus` further allow

developers to respond to user interactions such as gaining or losing focus or

changing the selected option. These events are integral for crafting

responsive and interactive web forms.

In summary, the Select object in Client-side JavaScript 1.0 empowers

developers to create versatile and dynamic form interfaces by manipulating

selection lists, accommodating user input, and responding to interactions

seamlessly. Understanding and leveraging these attributes and methods is

vital for web developers looking to enhance form usability and interactivity

in their applications.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 33 Summary: String

In the foundational chapters of the String object in JavaScript, we explore its

 significant role in text manipulation within programming. Originating from

the core JavaScript 1.0, JScript 1.0, and the ECMAScript version 1 (ECMA

v1) standards, the String object provides a multitude of methods and

properties to efficiently handle text data. A string in JavaScript is an

immutable series of characters, sourced from the Object class, allowing

developers to conduct various operations for more dynamic and responsive

applications.

JavaScript defines a 'String' in two core ways. The constructor, `String(s)`,

or its instantiation with `new String(s)`, serves dual purposes. Without the

`new` operator, it simply converts its argument to a string type, while with

`new`, it generates a String object encapsulating the value.

Key properties and methods enhance string manipulation. The `length`

property, for instance, returns the count of characters in the string, a

read-only value that enables quick assessments of text size.

Several methods allow for character and text retrieval and modification:

- `charAt(n)` retrieves the character at a specific position.

- `charCodeAt(n)` gives the Unicode value of a character at a specific

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

position, accessible since JavaScript 1.2.

- `concat(value, ...)` joins strings, translating arguments into a single

concatenated string, an addition from JS 1.2, with increased capabilities in

ECMA v3.

Locating substrings is made feasible by:

- `indexOf(substring, start)`, which returns the first appearance of a substring

within a string, beginning at the 'start' position.

- `lastIndexOf(substring, start)`, which performs a similar function, but

searches in reverse order.

Advanced string processing is facilitated by:

- `match(regexp)`, which tests a string against a regular expression,

outputting an array of matches.

- `replace(regexp, replacement)`, which crafts a new string by replacing

specified patterns.

- `search(regexp)`, determining the first positional occurrence of a regex

pattern.

For string segmentation and extraction, JavaScript offers:

- `slice(start, end)`, generating a subsection of a string from 'start' to 'end'.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

- `split(delimiter, limit)`, breaking a string into an array of substrings

delineated by a specified delimiter, an enhancement since JS 1.1.

- `substring(from, to)` and `substr(start, length)` provide means to extract

sections of strings, though `substr` is less preferred and labeled

non-standard.

Case alteration methods like `toLowerCase()` and `toUpperCase()` are

available for converting the entire string to lower or upper case respectively.

To complete the exploration, the static method `String.fromCharCode(c1, c2,

...)` permits the creation of strings directly from Unicode values, showcasing

powerful string handling abilities from ECMA v1.

This comprehensive array of properties, methods, and functions reinforces

JavaScript's robust approach to treating text strings, offering vital tools for

crafting versatile and interactive web solutions.

Feature Description

String
Definition

Strings can be instantiated using `String(s)` or `new String(s)`; without
`new` the value is just converted to a string type, with `new` it forms a
String object.

String
Immutability

A string in JavaScript is an immutable series of characters derived
from the Object class.

Length
Property

Returns the number of characters in a string, facilitating text size
evaluations.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Feature Description

Character
Retrieval

Methods like `charAt(n)` for character position retrieval and
`charCodeAt(n)` for Unicode values.

String
Concatenation `concat(value, ...)` joins multiple string values into one.

Substring
Location

`indexOf(substring, start)` for first appearance and
`lastIndexOf(substring, start)` for last appearance, the search reverse
function.

Advanced
Processing

`match(regexp)`, `replace(regexp, replacement)`, and
`search(regexp)` offer regex-based operations.

String
Segmentation

Methods like `slice(start, end)`, `split(delimiter, limit)`, `substring(from,
to)`, and `substr(start, length)` provide varied options for segmenting
and extracting string parts.

Case
Alteration

Methods `toLowerCase()` and `toUpperCase()` convert strings to
lower and upper case.

Static Method `String.fromCharCode(c1, c2, ...)` creates strings from Unicode
values.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 34 Summary: Style

In the section titled "Style: DOM Level 2; IE 4," the focus is on handling

 inline CSS properties of an HTML element using JavaScript. This overview

explores the `style` object, which allows developers to dynamically

manipulate CSS attributes through JavaScript.

The `style` object is a key aspect of the Document Object Model (DOM)

Level 2, which extends the capabilities of browsers like Internet Explorer 4

to manipulate the appearance and layout of elements on a webpage. The

properties within the `style` object closely mirror those defined by the CSS2

specification. This alignment means that each CSS property is accessible as

a JavaScript property, albeit with some syntax adjustments to fit JavaScript's

language rules.

Notably, multiword CSS attributes that include hyphens, such as

`font-family`, are translated into camelCase format in JavaScript—becoming

`fontFamily`. This conversion ensures compatibility with JavaScript's syntax

that prohibits hyphens. Additionally, because the word `float` is a reserved

keyword in JavaScript, the corresponding CSS property is accessed using

`cssFloat`.

A table is presented that lists numerous visual CSS properties accessible via

the `style` object. These include layout, typography, and color properties,

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

allowing comprehensive style manipulation. However, it’s highlighted that

not all properties might be supported by every browser, and developers are

encouraged to consult CSS references, such as "Cascading Style Sheets: The

Definitive Guide" by Eric A. Meyer, for detailed explanations and possible

values for each property.

All properties within the `style` object are strings, which requires careful

handling when dealing with numeric values. When retrieving numeric

properties, developers must use the `parseFloat()` function to convert them

from strings to numbers. Conversely, when setting a numeric property,

developers should convert numbers to strings, incorporating necessary units,

such as "px" for pixels.

Overall, this section emphasizes understanding the `style` object’s properties

for effectively modifying elements' styles using JavaScript, recognizing

syntax nuances, and referencing external CSS documentation for deeper

insights into CSS property specifications.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 35 Summary: Window

This text serves as a comprehensive guide to the use of JavaScript,

 especially focused on client-side scripting within web browsers. It begins by

exploring the foundational JavaScript language, touching initially on its

syntax. JavaScript is a case-sensitive, loosely-typed language inspired by

Java, C, and C++ — thus familiar to programmers of those languages. It

includes a variety of data types, such as numbers, strings, booleans, objects,

and arrays, alongside special types for functions and regular expressions.

Expressions in JavaScript are built using various operators, including

arithmetic, comparison, and logical operators. Statements in JavaScript can

be simple assignments or include complex conditional and loop constructs

like `if`, `for`, and `while`.

The text then delves into JavaScript as an object-oriented language,

illustrating how constructors and prototypes work to define reusable object

patterns. The coverage extends to regular expressions, a powerful feature

used for string pattern matching, complete with Perl-like syntax for

advanced text processing operations.

JavaScript's evolution is charted through the multiple versions introduced by

Netscape and Microsoft, moving from JavaScript 1.0 to the more robust 1.5,

which includes features like exception handling and is compliant with

ECMAScript standards. The text also compares this against the various

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

iterations of Microsoft's equivalent, JScript.

In the realm of client-side JavaScript, the narrative explains how the

language integrates with HTML to create dynamic web content. JavaScript

may be embedded within HTML through `<script>` tags, event handlers,

and specifically crafted URLs, which enable the execution of JavaScript

code in response to user interactions.

The Window object serves as a core component in client-side JavaScript,

representing the browser window, providing properties for document

manipulation, event handling, and system information. The Document

Object Model (DOM), specifically the legacy DOM, W3C DOM, and IE 4

DOM, is explained as JavaScript's mechanism for interacting with HTML

documents, allowing developers to access page elements like forms, images,

and links.

The text moves to more advanced concepts in manipulating document

elements, employing the W3C DOM to access elements by ID or tag, alter

nodes, and manage the HTML structure. It also discusses the IE 4 DOM's

distinctive features, like the `all[]` array for element lookup and

`innerHTML` property, which were popular but non-standard.

Dynamic HTML (DHTML) is covered as the technique of using JavaScript

to modify CSS styles dynamically, offering properties to control positioning

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

and visibility directly within scripts. JavaScript enables fine-grained control

over web page presentation through style properties like `left`, `top`,

`visibility`, and more.

Event handling in JavaScript, a key aspect that enables responsive web

applications, is well-detailed, including basic event handlers attached to

elements and the differing models supported by browsers like Microsoft’s IE

and Netscape. The guide highlights sophisticated features like event

propagation and registration, necessary for handling complex user

interactions in modern web applications.

Security is a concluding focus, outlining essential restrictions to protect

users, such as the same origin policy, limitations on file uploads, and

restrictions on creating nuisance windows or accessing certain system

resources.

Finally, the text provides a quick reference for JavaScript's core and

client-side APIs — cataloging key objects, methods, and properties —

serving as a precise technical guide useful for developers working with

ECMAScript-compliant environments and modern web browsers like IE 6,

Netscape 7, and Mozilla.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

