Python Programming For Beginners PDF
(Limited Copy)

Jason Cannon

PYTHON
PROGRAMMING

FOR

R

e

More Free Book = PR
[=]5:::

Scan to Dov.vnload

https://ohjcz-alternate.app.link/zWumPVSnuOb

Python Programming For Beginners Summary
"Master Coding Essentials and Build Real-World Applications'
Written by Booksl

More Free Book %‘\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the book

Dive into the dynamic world of coding with "Python Programming For
Beginners' by Jason Cannon, your ultimate guide to mastering one of the
most versatile programming languages in today's tech-driven society. With
an engaging approach tailored for novice programmers, this book breaks
down the complexities of Python into digestible step-by-step instructions.
Whether you're an aspiring developer or someone simply curious about the
digital language that empowers industries worldwide, you'll find
encouragement and clarity in Jason Cannon's methodical teaching style.
Enthusiastic learners will uncover the limitless possibilities of Python with
practical exercises, real-world scenarios, and thoughtful insights, ensuring
you build a solid foundation in programming. By the end of your journey
through these pages, you'll not only write code but understand its potential to
revolutionize and innovate. Embark on this educational adventure and et

Python be your gateway to the future of technology.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the author

Jason Cannon is a highly regarded software developer and educator in the
field of programming and technical training. With a career spanning more
than two decades, he has earned a solid reputation for his clear and practical
approach to teaching programming languages, especialy Python. Jason is
the founder of the Linux Training Academy, where he leverages his vast
industry experience to create and deliver comprehensive training materials
for budding programmers worldwide. Alongside his professional
accomplishments, Jason is renowned for his ability to ssmplify complex
programming concepts, making them accessible to beginners and experts
alike. Through his popular books and courses, he has enabled countless
individuals to step confidently into the world of coding, emphasizing

hands-on learning and practical application from day one.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

N 4 th(

'
Try Bookey App to read 1000+
summary of world best books
Unlock Titles, Topics
New titles added every week

Brand %— Leadership & Collaboration @ Time Management (=) Relationship & Communication
ness Strategy @ Creativity Public Money & Investing @ Know Yourself {’_’P Positive F
? Entrepreneurship World History C\Q Parent-Child Communication @ Self-care é.i.:\ Mind & Spi

Insights of world best books

THINKING, ATOMIC HABITS
FAST AND SLOW Mastering the art of power, to

have the strength to confront
complicated situations

—

M

HOW TO TALK
TO ANYONE D:,::I).Du

Chiv

N'

&

pn
-

Free Trial with Bookey:

https://ohjcz-alternate.app.link/zWumPVSnuOb

Summary Content List

Chapter 1. Python Programming for Beginners
Chapter 2: Configuring your Environment for Python
Chapter 3. - Variables and Strings

Chapter 4: - Numbers, Math, and Comments

Chapter 5: - Booleans and Conditionals

Chapter 6: - Functions

Chapter 7: - Lists

Chapter 8: - Dictionaries

Chapter 9: - Tuples

Chapter 10: - Reading from and Writing to Files

Chapter 11: - Modules and the Python Standard Library

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 1 Summary: Python Programming for Beginners

Python Programming for Beginners by Jason Cannon - Summary

|ntroduction and Setup

The book begins with introductory material, including a free gift, followed
by the importance of configuring your environment for Python. This
involvesinstalling Python on your computer and ensuring that your system
IS properly set up to run Python programs. A review and additional resources

are provided to solidify this foundational step.

Chapter 1: Variables and Strings

This chapter introduces variables as the basic storage units in Python and
explores strings, which are sequences of characters. Key concepts include
using quotes within strings, indexing, and various built-in functions. Readers
learn about string methods for manipul ating text, string concatenation, and
repetition using the “str()” function. The chapter also covers asking for and
formatting user input, ending with exercises and resources to practice these

concepts.

Chapter 2: Numbers, Math, and Comments
Here, the focus shifts to numeric operations and the interplay between

strings and numbers. The use of the “int()” and “float()” functionsis

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

explained to handle different numeric types. Comments, essential for
documentation in coding, are introduced before the chapter wraps up with a

review and exercises.

Chapter 3: Booleans and Conditionals

Readers are introduced to comparators and Boolean operators which form
the foundation of conditional statements. This chapter explains how to use
these tools to direct the flow of a program based on certain conditions, with

practical exercisesto reinforce learning.

Chapter 4: Functions

Functions, which are reusable blocks of code, are introduced as away to
make programs more organized and manageable. The chapter breaks down
how to define and use functions, offering review exercises and resources to

practice creating them.

Chapter 5: Lists

As afundamental data structure in Python, lists are explored in-depth. This
chapter includes how to add, slice, and find items within lists. Looping,
sorting, and concatenation of lists are also discussed, along with the concept
of ranges and handling exceptions. Exercises help to apply the concepts

learned.

Chapter 6: Dictionaries

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Dictionaries, another crucial data structure, are covered. Readerslearn to
add, remove, and find items within dictionaries, as well as loop through
them and nest dictionaries within each other. This chapter also includes

exercises to apply these concepts.

Chapter 7: Tuples
The concept of tuples, which are immutable sequences, isintroduced. The
chapter covers switching between tuples and lists, looping through tuples,

and tuple assignment, with exercises to reinforce learning.

* Chapter 8: Reading from and Writing to Files*

This chapter discusses file handling in Python, including file positioning,
closing files, reading files line-by-line, and different file modes. Writing to
files and dealing with binary files are a'so covered. Handling exceptions

related to file operations is explained, with exercises for practice.

Chapter 9: Modules and the Python Standard Library

Modules, which are collections of Python code, are introduced along with
methods to inspect them. The chapter explains the module search path and
the vast resources available within the Python Standard Library. Readers
learn to create their own modules and use the "'main” method, with exercises

to solidify understanding.

* Conclusion and Additional Resources*

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

The conclusion offers a brief reflection on the topics covered,
encouragement for further exploration, and additional resources, including
discounts relevant to Python and related fields such as Ruby on Rails and

web development.

* Appendix*
The appendix section contains a note on trademarks related to the content
discussed in the book.

Overall, Jason Cannon's "' Python Programming for Beginners' amsto
provide a comprehensive yet accessible introduction to Python, guiding
readers from foundational concepts to more complex programming
structures, all while offering practical exercises and resources for ongoing

learning.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 2 Summary: Configuring your Environment for
Python

This chapter focuses on setting up a Python programming environment
across different operating systems and outlines how to effectively use
Python for development. It begins by emphasizing the choice of Python
version, recommending Python 3 for new projects due to its modern features
and improvements since its release in 2008. Nevertheless, it acknowledges
that Python 2.7 can be used if necessary, particularly when projects depend
on third-party software not yet upgraded to Python 3.

The installation process varies by operating system. On Windows, users
must download the installer from the official Python website, as Python does
not come pre-installed. Following the default installation procedure ensures
a smooth setup. Mac users, who have Python 2 pre-installed, are advised to
download Python 3 to access the latest features. The installation involves
opening a downloaded disk image and following prompts that require
administrator credentials. Linux, with its many distributions, often comes
with both Python 2 and Python 3 installed, but verifying and updating
Python 3 is essential. For Debian-based distributions like Ubuntu and
Debian, or RPM-based ones like Fedora and RedHat, package managers like
‘apt' and 'yum' facilitate the process, while compiling from sourceis an

option if a package isn't available.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

I nteracting with Python can be done in two main ways:. using IDLE
(Integrated Development and L earning Environment) for a graphical
interface or through the command line, suitable for both casual
experimentation and professional development. The command line
interaction involves starting the Python interpreter directly by using ‘python'

or 'python3' commands, depending on the operating system.

Running Python programs also has some specifics. on Windows, you can
use the command line or double-click a Python script, though the latter may
close too quickly to view output. On Mac and Linux, executing the program
viathe command line with 'python3 program_name.py' istypical.
Programmers can also make scripts executable on Unix-like systems by

adding an interpreter directive at the top of thefile.

Editing Python source code is possible both within IDLE or through various
text editors that suit different operating systems, like Geany, JEdit, or
Sublime Text. Regardless of the editor choice, Python code conventions
such as using four spaces for indentation should be adhered to ensure

cross-platform compatibility.

The chapter encourages proactive learning by typing out Python examples, a
practice beneficial for learning syntax and debugging skills, although

accessing pre-written examples can be found on specified resources.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

In sum, the chapter encapsulates the essential steps from choosing the
appropriate Python version, guiding install ations across operating systems,
to running and editing Python programs. It aligns with the modern

development workflows and tools that enhance learning and productivity in

Python.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 3 Summary: - Variablesand Strings

#i## Chapter 1 - Variables and Strings

In this chapter, we delve into fundamental Python concepts focused on

variables and strings, forming the backbone of any programming logic.

HitH Variables

Variables in Python serve as named storage locations, essentially acting as
"name=value pairs, allowing you to assign and retrieve datausing a
designated variable name. For instance, you can assign the value 'apple” to

avariable named “fruit” asfollows:

" python

fruit = "apple

Y ou can change the value of avariable at any time, like reassigning the value

to “'orange”:

T python

fruit = 'orange

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

When naming variables, it's beneficial to choose descriptive names that
convey the datathey hold, improving code readability. For example, using
“fruit” over an ambiguous "X provides immediate context. Remember,
variable names in Python are case-sensitive and must start with aletter but
can include numbers and underscores, like first3letters’,

“first_three letters’, or firstThreeL etters'. However, avoid symbols like

hyphens or plus signs.

HiHHE Strings
Strings are sequences of characters enclosed in quotes, used to handle text

data. In Python, strings can be defined using either single or double quotes:

“python
fruit = "apple

fruit = "apple"

When embedding quotes within strings, you should match the outer quotes
with the inner quotes or use an escape character, "\, to include both single
and double quotesin the text seamlesdly:

" python

sentence = 'She said, "That\'s a great apple! "

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

#HH# String Indexing
Each character in astring isindexed, starting with 0. This allows you to

access any character using its index:

" python
a="apple[0] #'d
e="apple[4] #'e¢

#HH## Built-in Functions
Functions are reusable blocks of code in Python. Key built-in functions

include;

- “print()": Displays values.

- ‘len()": Returnsthe length of astring, i.e., the number of charactersit
contains.

T python

fruit = "applée

print(fruit) # Output: apple
print(len(fruit)) # Output: 5

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

#HHE String Methods
Objectsin Python, including strings, come with methods - specialized

functions that act on objects. Common string methods include:

- "lower() : Convertsall charactersin astring to lowercase.

- “upper() : Convertsall charactersin astring to uppercase.
T python

print(fruit.lower()) # Output: apple
print(fruit.upper()) # Output: APPLE

#H#H String Concatenation

Concatenation combines strings using the "+ operator:
T python

print('l ' +'love' + 'Python.") # Output: | love Python.
#HHHH String Repetition

Repeat strings with the asterisk operator:

“python

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

print(’-' * 10) # Output; ----------

#H#H The “str()” Function
To concatenate strings and numbers, you must convert numbers to strings

using ‘str() :

T python
version = 3

print('l love Python' + str(version) +'.") # Output: | love Python 3.

H#HH# Formatting Strings
The format()" method allows for dynamic string formatting using
placeholders indicated by curly braces:

AN

python
print('l {} Python.".format('love’)) # Output: | love Python.

Y ou can specify alignment, width, and precision in placeholders, facilitating
table-like output:

“python

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

print(‘{0:8} | {1:<8}".format('Apple, 2.33333)) # Output: Apple|2.33

#HH# Getting User Input
The “input()” function allows interaction with the user, capturing inputs

entered via a keyboard:

“python
fruit = input('Enter a name of afruit: ')

print('{} isalovely fruit.".format(fruit))

HitH Review

The chapter consolidates key programming concepts:

- Variables are named placeholders for data.

- Strings are text data surrounded by quotes.

- Functions and methods perform actions or manipulate objects.

- Python provides tools for string operations, formatting, and user

Interaction.

HiHH Exercises
Practical problems, such as creating programs that display categorized
values or mimic user input, help reinforce learning. Sample exercises

include;

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

1. Displaying an animal, vegetable, and mineral using variables.
2. Repeating user input and incorporating interactive cat graphics through

user prompts.

HHH Resources
Explore more about string operations and built-in functions through official

Python documentation:

- [Common String Operations] (https://docs.python.org/3/library/string.html)
- [input()

Documentation] (https.//docs.python.org/3/library/functions.html#input)

- [len()

Documentation] (https.//docs.python.org/3/library/functions.html#len)

- [print()

Documentation] (https://docs.python.org/3/library/functions.html#print)

- [str()

Documentation] (https:.//docs.python.org/3/library/functions.html#func-str)

Through this chapter, readers gain foundational knowledge in handling
text-based data and utilizing essential functions in Python, setting the stage

for more advanced coding challenges.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 4. - Numbers, Math, and Comments

Chapter 2 of the book provides a comprehensive overview of handling
numbers, performing mathematical operations, and writing comments in
Python, designed for beginners delving into programming. Unlike strings,
which require quotation marks, numbers in Python can be directly used in
code. Python supports two primary numeric data types: integers (whole
numbers) and floating-point numbers (numbers with decimals). Variables
can be assigned numbers in the ssimple format of “variable name = number".

For example, “integer = 42" and float = 4.2".

The chapter introduces Python's capability to handle several numeric
operations such as addition (+), subtraction (-), multiplication (*), division
(/), exponentiation (**), and modulo (%). The division operator always
returns a floating-point result, turning even whole number divisionsinto
floats, as seen when 8 divided by 2 resultsin 4.0. Additionally, adding any
integer to afloat will yield a floating-point result.

By using the interactive Python shell, one can perform mathematical
operations and assign the results to variables. The chapter illustrates basic
operations like sum, difference, product, quotient, power, and remainder
using these operators. For example, "power = 2 ** 4" would calculate 2 to
the power of 4, resulting in 16, and ‘remainder = 3% 2" would return 1, as 3

divided by 2 has aremainder of 1.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Python allows for variable-based calculations as well. For instance,
computing "new_number = sum + difference’ combines previous variable
results for further operations. A demonstration of string-related errors occurs
when trying to add numbers to a string without conversion. Stringsin
guotes, even if numeric, can't be directly operated on with integers. This
necessitates type conversion using functions like "int()” for integers or
“float()” for floating point numbers to seamlessly conduct numerical

operations.

Variables such as "quantity_string ='3" would require conversion via
“int(quantity_string)” to avoid errors when combined with numbers.
Similarly, floating-point conversions use the “float()” function to change

strings like 3" into 3.0.

Comments in Python serve as documentation within the code. Denoted by
the octothorpe (#) for single lines, they help explain and clarify what the
code does for future reference or for other programmers. Multi-line
comments utilize triple double quotes (*""), allowing longer descriptions or

explanations without affecting the code execution.

The chapter reviews these concepts succinctly, emphasizing that proper type
conversion is crucial when working with numbers as strings. Comments are

essential for human readability and comprehension, though Python itself

Dlgrid

=
More Free Book R
Ot 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

disregards them when running the code.

Finally, practical exercisesin the form of a cloud hosting cost calculation
introduce learners to real-life applications of these concepts. The series of
examples guide users to compute costs per hour, day, and month, and
calculate operational duration within a set budget, integrating comments to

enhance clarity and learning.

Overall, Chapter 2 equips readers with foundational Python skillsto

effectively manage numbers, perform mathematical operations, and

doctiment their code navvina the wav for more ach/anced nroarammina

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey x‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

People fave bpag [=F?
N Crazy

=t
o ALRTA Y a&_{_
\“:.:-\-:m L O QAN

)
We
ok

Oe

Why Bookey is must have App
for Book Lovers

30min Content

@ The deeper and clearer interpretation we provide, the better
grasp of each title you have.

E Text and Audio format

Absorb knowledge even in fragmented time.

—v Quiz
Check whether you have mastered what you just learned.

A® And more
oo Multiple Voices & fonts, Mind Map, Quotes, IdeaClips...

\ L
Free Trial with Bookey~

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 5 Summary: - Booleans and Conditionals

Chapter 3. Booleans and Conditionals

In programming, a boolean is a fundamental data type with only two
possible values: "True or "False'. These values are akin to a simple on/off
switch, without any intermediate state. When assigning a boolean to a
variable in Python, you ssmply write "variable name = True or

“variable name = False’, without using quotes, which are reserved for

strings.
#i# Comparators

Comparators are operators used to compare numeric values, resulting in a
boolean output. Common comparators include:

- ==": Equal to

- >": Greater than

- ">=": Greater than or equal to

- <. Lessthan

- '<=": Lessthan or equal to

- "1=": Not equal to

For example, expressionssuch as "1 == 2 result in "False’, while 1< 2

Dlgrid

=
More Free Book R
Ot 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

resultsin "True'.

Boolean Operators

Boolean operators perform logical operations on boolean values or
expressions. They include:

- and: Yields True' if both operands are true.

-or: Yields True' if at least one operand is true.

- not: Produces the opposite boolean value of the given operand.

A truth table, commonly used to illustrate these operations, confirms these
logical results. The "not™ operator has the highest precedence, followed by
"and’, and lastly "or". To explicitly manage evaluation order, use
parentheses, ensuring clarity in complex expressions (e.g., (True and False)

or not False” evaluatesto True).
Conditionals
Conditionals allow decision-making in code using 'if ", "else’, and “dlif’

(short for "elseif") statements. These constructs execute code blocks based

on the evaluation of conditions;

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

- if: Executes the block only if the conditionis "True'.
- else: Executes the block if the preceding "if conditionis "False'.

- elif: Evaluates subsequent conditions if previous 'if and “elif

conditions are False'.

Consider this scenario:
T python
age=31
if age>= 35;
print("Y ou are old enough to be the President.")
elif age >= 30:
print("Y ou are old enough to be a Senator.")
else
print("Y ou are not old enough to be a Senator or the President.")

print('Have a nice day!")

This script evaluates the "age” variable to determine eligibility for different

political offices, printing the result accordingly.
Code blocks follow a strict indentation convention, typically using four

gpaces to delineate nesting levels. Consistency is vital, asinconsistent

indentation leads to errors like “IndentationError .

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

#HE SUmmary

This chapter covers:

- Booleans and their "True or "False” values.

- Using comparators to evaluate numeric relationships, yielding boolean
results.

- Boolean operators ("and’, “or’, "not’) and their precedence.

- Structuring code with conditionals (Cif ', “else’, "elif) for decision making.

- Using consistent indentation to define and manage code blocks in Python.
#H Exercises

A practical exerciseinvolves creating a program that suggests a mode of
transportation based on distance:
T python

distance = int(input('"How far would you like to travel in miles?"))

if distance < 3:
mode _of transport = ‘walking'
elif distance < 300:
mode_of transport = 'driving'

else:

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

mode_of transport = 'flying'

print(f'l suggest {mode of transport} to your destination.")

#Ht Additional Resources

For further exploration:

- [Python Built-in Types] (https.//docs.python.org/3/library/stdtypes.html)
- [Order of Operations

(PEMDAYS)](http://www.purplemath.com/modul es/orderops.htm)

- [Style Guide for Python Code (PEP

8)] (http://legacy.python.org/dev/peps/pep-0008/)

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Conditionals as Decision-Making Tools

Critical Interpretation: In your day-to-day life, just asin programming
with conditionals like if, elif, and else, you regularly evaluate
situations and make decisions based on different conditions. These
conditionals remind usthat life is a series of choices, where the
outcomes shape our path. Harness the power of critical thinking
inspired by conditionals to weigh options and anticipate consequences.
Whether it's career moves, personal goals, or daily challenges,
approaching each situation with the structured reasoning of a
conditional statement can guide you to make informed and thoughtful

decisions to direct your life's narrative toward a desired outcome.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 6 Summary: - Functions

Chapter Summary: Functionsin Python

In programming, there's a crucia principle called DRY, which stands for
"Don't Repeat Yourself." This principle advocates for minimizing code
duplication, atask for which functions are particularly well-suited. Functions
allow you to encapsulate a set of instructions within asingle block of code
that can be called whenever needed. This not only reduces redundancy but
also simplifies testing, troubleshooting, and documentation, ultimately

making the codebase more maintainable.
Defining a Function:

To define afunction in Python, use the “def” keyword followed by the
function name and parentheses. If the function requires parameters, these
should be listed within the parentheses. Parameters act as variables within
the function, and they can be either required or optional by providing a
default value. The function definition ends with a colon, and the subsequent
indented block contains the code to be executed whenever the function is
called. Here's asimple example:

AN

python

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

def say hi():
print('Hi!")

A function must be defined before it can be called. Calling afunction

requires using the function's name followed by parentheses.
Functionswith Parameters:

Functions can accept parameters to make them more dynamic. These

parameters can have default values, making them optional. For instance:

" python
def say hi(name="there'):
print(f'Hi { name}!")

This setup alowsyou to call “say hi()" either with or without providing a
name. Functions can also accept multiple parameters, which are called
positional parameters due to their order-dependent nature. Alternatively,
named parameters remove the order requirement by explicitly stating the

parameter's name.

Docstrings.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Thefirst line within afunction is typically adocstring, enclosed in triple
guotes. This string summarizes the function's purpose and can be accessed
using Python's built-in "help()” function, which is useful for documentation

and understanding the function'srole.
Returning Data:

Functions can execute a series of actions and optionally return data using the
“return’ statement. Once a function reaches a return statement, it stops
executing further code. Functions can return various data types, from strings

to booleans.
Nested Functions and Practice:

Functions can even call other functions, forming a complex and elegant code
structure. For instance, creating a word game where user input fills blanksin

a story demonstrates the practical application of functions:

T python
def get_word(word_type):

Get aword from a user and return that word.
a or_an="an'if word type.lower() == 'adjective else'd

return input(f'Enter aword that is{a or_an} {word type}: ")

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

def fill_in_the blanks(noun, verb, adjective):
"""Fillsin the blanks and returns a compl eted story."""
return f"1n this book you will learn how to {verb}. It's so easy even a

{noun} can doit. Trust me, it will be very { adjective}."

def display_story(story):
"""Displays a story."""
print("\nHere is the story you created. Enjoy!\n")

print(story)

def create_story():
""" Creates a story by capturing input and displaying the finished story."""
noun = get_word('noun’)
verb = get_word('verb')
adjective = get_word(‘adjective)
story =fill_in_the blanks(noun, verb, adjective)
display_story(story)

create story()

This chapter highlights the importance of mastering functions, a

foundational skill for efficient, clean, and scalable coding practices. Exter nal

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Resources are recommended for deeper learning about DRY principles, help
documentation, and docstring conventions (accessible viathe linked URLs

provided in the resources section).

##+ Resources

- DRY Principle: [Don't Repeat Y ourself](https://en.wikipedia.org/wiki/
Don%27t_repeat_yourself)

- Python "help()” documentation: [Python help()](https.//docs.python.org
/3/library/functions.html#hel p)

- Docstring Conventions (PEP 257): [PEP 257 Docstring Conventions](h
ttp://legacy.python.org/dev/peps/pep-0257/)

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Don't Repeat Y ourself (DRY) Principle

Critical Interpretation: Embracing the philosophy of 'Don't Repeat
Yourself' (DRY) can inspire profound change in your daily life by
highlighting the value of efficiency and ssimplicity. Just as functionsin
Python encapsul ate reusable code, you can streamline your life by
focusing on minimizing redundancy and optimizing routine tasks. By
identifying repetitive patterns and creating systematic solutions, you
cultivate an environment where each action contributes uniquely to
progress without unnecessary repetition. Adopting this mindset
encourages you to approach challenges with a more strategic view,
ultimately enhancing productivity and promoting creativity by freeing

up mental space for innovative thinking.

More Free Book %‘\ R
Scan to ov.vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 7 Summary: - Lists

Chapter 5 Summary: Introduction to Lists and Basic Oper ations

In earlier chapters, you explored various fundamental data types like strings,
integers, floats, and booleans. This chapter dives into the concept of listsin
Python—a versatile data type that stores an ordered collection of items.
These items can be of any datatype, including other lists, presenting a vast

array of possibilities when managing complex data.
Creating and Accessing Lists

Lists are constructed using sguare brackets, containing items separated by
commas. For example, “list_name = [iteml, item2, item3]" establishes alist.
Accessing list elementsis achieved through zero-based indexing. Thus,
‘list_ name[0] retrievesthefirst item. Y ou can aso assign new values by

specifying the index, e.g., "list name[0] = 'new_value'".

Lists support dynamic modifications. New elements can be appended using
“append()” or added in bulk with “extend()", accommodating another list. If
you wish to insert an item at a specific place, the “insert()” method comes

into play, shifting subsequent elements accordingly.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Advanced Access Techniques: Slices and Negative Indices

Python allows retrieving sub-sections of lists using slices, specified by a
starting and ending index within brackets like “list[start:end] . If indices are
omitted, defaults are assumed: start at zero or end at the list's length.
Furthermore, negative indices help access elements from the list's end, with

-1 pointing to the last item.
| nteracting with String Segments

Similar to lists, strings in Python can be sliced to extract specific character

segments, treating the string as alist of characters.

Finding Elements and Exception Handling

To find an element's index, use the “index()” method. If the element is
absent, an exception is raised. Handling exceptions prevents program
crashes, which is crucial when accessing potentially missing list elements.
Thisis managed using try/except blocks, capturing and responding to
specific errors.

Iterating Through Lists

For actions on each element in alist, employ a ‘for™ loop, iterating over all

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

items sequentially. A “while” loop is another iteration mechanism, executing
aslong as its condition remains true. These loops are staple constructs for

navigating and manipulating list contents effectively.
Sorting and Combining Lists

Lists can be sorted using the “sort()” method, reordering elements in place,
or by “sorted(), creating a new sorted list. Concatenation, achieved with the
"+ operator, merges multiple lists into one. Python’s "len()” function helps

determine alist's length.
Using Ranges and L oops

The ‘range()” function generates sequences of numbers, frequently combined
with “for” loops for index-based list actions. Ranges are customizable with
starting, stopping, and stepping parameters, facilitating complex iteration

patterns like accessing every other list item.

Exercises and Practical Application

An exercise encourages building ato-do list manager in Python,
emphasizing using lists, loops, and inputs to capture and display tasks

interactively. This hands-on practice consolidates the list manipulation

concepts covered throughout the chapter.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Resour ces and Further Reading

For comprehensive descriptions and advanced topics, external Python

documentation and resources on data structures, exception handling, and

loops are recommended. These resources provide in-depth understanding

and examples, enhancing your grasp and application of lists in programming

endeavors.

Section

Introduction to
Lists

Creating and
Accessing Lists

Advanced
Access
Techniques

String Segments

Finding
Elements and
Exception
Handling

lterating
Through Lists

More Free Book

Content Summary

Lists are a versatile data type in Python, used to store ordered
collections of items of any type.

Lists are created using square brackets and accessed with

zero-based indexing. They are dynamic and can be modified with

append(), extend(), and insert().

Use slices to retrieve sub-sections and negative indices to acc
elements from the list's end.

Strings can be sliced like lists to extract specific segments.

Use index() to find an element's position. Employ try/except to
handle exceptions and avoid program crashes.

ess

Use for and while loops to navigate and manipulate list elements

efficiently.

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Content Summary

Sorting and Sort lists with sort() or sorted(). Concatenate lists using the "+"
Combining Lists operator. Use len() to get list size.

Using Ranges Utilize the range() function with for loops for indexed-based list
and Loops operations. Configurable to suit iteration needs.

Exercises and Practice by building a to-do list manager, reinforcing list handling

Prac_t|ca_l concepts with interactive tasks.
Application
Resources and Explore external Python documentation and advanced resources on

Further Reading data structures and exception handling for deeper insights.

More Free Book

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 8: - Dictionaries

Chapter 6 covers the concept of dictionariesin programming. Dictionaries
are atype of data structure that store information in key-value pairs,
alowing for efficient dataretrieval by referencing the key. This structureis
sometimes also referred to as associative arrays, hashes, or hash tables. In
Python, dictionaries are represented using curly braces *{}, with each item
comprising akey followed by a colon and avalue, formatted as "{key 1.
value 1, key N:value N} . For an empty dictionary, ssimply use '{} .

To accessavauein adictionary, reference its key within square brackets
following the dictionary's name. For example, “contacts'Jason’]” retrieves
Jason’ s phone number from adictionary called contacts. Additionally,
values can be updated or added using asimilar syntax: “contactg'Jason'] =
'555-0000".

|tems can also be added to dictionaries through assignment, using a new key:
“contactg 'Tony'] = '555-0570". The number of items can be gauged using
the “len()” function, which returns the count of key-value pairsin the
dictionary. Items can be removed using the "del” statement, such as "del
contactg['Jason’] .

Vauesin dictionaries can vary in type; for instance, one key might be

associated with alist, and another with a string. The structure allows you to

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

iterate over values, particularly when dealing with lists, using loops like “for

number in contacts['Jason’ .

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey x‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

tes after each book summary
erstanding but also make the
and engaging. Bookey has
ling for me.

Love it!

ling habit
)'s design
1al growth

'z « 3
:; ‘:
’ \
Y/ App Store \V/

' Editors’ Choice ‘:."

Positive feedback

Fantastic!!! Fi
I'm amazed by the variety of books and languages Al
Bookey supports. It's not just an app, it's a gateway bc
to global knowledge. Plus, earning points for charity to
is a big plus! m

Bookey offers me time to go through the
important parts of a book. It also gives me enough
idea whether or not I should purchase the whole

book version or not! It is easy to use!

Awesome app!

I love audiobooks but don't always have time to listen
to the entire book! bookey allows me to get a summary
of the highlights of the book I'm interested in!!! What a
great concept !!'highly recommended!

Time saver!

Bookey is my go-to app for
summaries are concise, in¢
curated. It's like having acc
right at my fingertips!

Beautiful App

\ L
Free Trial with Bookey~

This app is a lifesaver for book lovers witk
busy schedules. The summaries are spot
on, and the mind maps help reinforce wh
I've learned. Highly recommend!

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 9 Summary: - Tuples

#H# Chapter 7: Tuples

In programming, atuple is afundamental concept that serves as an

immutable list, meaning its contents cannot be altered once defined. Unlike
regular lists that allow modification such as adding, removing, or changing
elements, tuples maintain afixed state. However, like lists, tuples are
ordered and their elements can be accessed using indices, including negative
indices for reverse order. The syntax for creating atuple involves enclosing
comma-separated values within parentheses. “tuple_name = (item_1, item 2,
item_N)". Even asingle item must be followed by a commato denote it asa

tuple, e.g., ‘single item = (item _1,)".

Tuples are particularly useful for storing data that should remain constant
during the execution of a program, ensuring reliability. For example, the

days of the week can be effectively managed within atuple:

T python
days of the week = ('‘Monday', 'Tuesday', 'Wednesday', 'Thursday’', 'Friday’,
‘Saturday’, 'Sunday")

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Tuples support a variety of operations. Y ou can iterate over them using a
“for” loop, concatenate them, and access slices. However, attempting to
modify atuple will result in an error. For example, trying to change
'Monday' to ‘New Monday' will raise a TypeError™. While tuple el ements

cannot be altered, the entire tuple can be deleted using the "del ™ statement.
#i#H Switching Between Tuples and Lists

Conversion between tuples and lists is straightforward. Use the list()’
function to convert atupleto alist and "tuple()” to do the opposite. This
conversion is useful when element modification is necessary but you want to

leverage tuple features for immutability.

“python

days of the week tuple = ('Monday', 'Tuesday', 'Wednesday', 'Thursday’,
'Friday', 'Saturday', 'Sunday")

days of the week list = list(days of the week tuple)

print(type(days of the week tuple)) # Outputs. <class 'tuple’>
print(type(days of the week list)) # Outputs. <class'list™>

#H#H Looping Through Tuples

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Y ou can loop through tuples similarly to lists. Thisis beneficial when you
need to apply an operation to each element. For instance, iterating over

“days of the week’ prints each day.

" python
for day in days of the week:
print(day)

##H Tuple Assignment

Tuple assignment allows multiple variables to be assigned values
simultaneously. Thisfeature is useful for unpacking elements in sequences
like lists or nested tuples. For example, splitting contact information into
separate variables:

T python

contact_info = ['555-0123, 'jason@example.com]
(phone, email) = contact_info

print(phone) # Outputs. 555-0123

print(email) # Outputs. jason@example.com

Further, functions returning tuples can utilize this feature. For instance, to

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

find the highest and lowest numbersin alist:

“python

def high_and_low(numbers):
highest = max(numbers)
lowest = min(numbers)

return (highest, lowest)
lottery _numbers = [16, 4, 42, 15, 23, §]
(highest, lowest) = high_and_low(lottery _numbers)
Tuple assignment extends to loop iterations, particularly with list of tuples.
Thisis demonstrated in handling contacts:
" python
contacts = [(‘Jason’, '555-0123"), (‘Carl’, '555-0987")]
for (name, phone) in contacts:
print(f"{ name}'s phone number is { phone}.")

HitHHt Review

Tuples are immutable, ensuring data integrity. Conversion between lists and

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

tuplesis seamlessusing “list()” and “tuple()” methods, respectively. Tuple
assignment expedites variable value initializations, supports function
returns, and optimizes loop processes. Essential built-in functions such as

‘max()” and ‘min()" facilitate data analysis within tuples.
HiHH Exercises

One practical exercise involves creating alist of airport codes using tuples.
By looping through this list and employing tuple assignment, each airport's

name and code can be easily displayed.

“python

airports = [
("O’Hare International Airport”, 'ORD'),
('Los Angeles International Airport', 'LAX"),
(‘Dallas/Fort Worth International Airport', 'DFW"),
(‘Denver International Airport’, 'DEN')

for (airport, code) in airports:

print(f'The code for {airport} is{code}."

By understanding these principles and technigues, one can effectively utilize

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

tuples to maintain data consistency and streamline operations within their

programming endeavors.

HHH Resources

Further reading and official documentation on these concepts can be found
through Python resources, including:

- [list()”

documentation] (https:.//docs.python.org/3/library/functions.html#func-list)
- [max()

documentation] (https://docs.python.org/3/library/functions.html#max)
-['min()’
documentation](https:.//docs.python.org/3/library/functions.html#min)

- [type()
documentation](https://docs.python.org/3/library/functions.html#type)

- [tuple()’

documentation] (https://docs.python.org/3/library/functions.html#func-tupl e)

Section Description

Tuples are immutable ordered lists that cannot be modified after
creation. They're created using parentheses and used for constant
data.

Introduction to
Tuples

Define tuples using parentheses: tuple_name = (iteml, item2, ...).

Tuple Syntax . :
Ensure a comma even for a single item.

More Free Book r\ A P
undefin |

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Description

Tuple Tuples support iteration, concatenation, and slicing but not element
Operations modification. The entire tuple can be deleted.
Switching

Convert between tuples and lists using list() and tuple() to enable

Betwgen Tuples modification and immutability features respectively.
and Lists
Looping Use loops to access tuple elements, similar to lists. Each element

Through Tuples can be processed with a for loop.

Tuple Simultaneously assign multiple variables using tuples. Useful for
Assignment unpacking sequences and function return values.

Tuples ensure data integrity, facilitate seamless conversion with lists,

Review . : C
enhance variable assignments, and optimize loops.
: Practical exercise involves creating a list of airport codes using
Exercises : .
tuples and displaying names and codes through loops.
Access further information and official documentation on
Resources

tuple-related functions from Python resources.

More Free Book

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 10 Summary: - Reading from and Writing to
Files

In Chapter 8, the focusison file handling in Python, a critical aspect for
applications that need to store or retrieve data persistently. The chapter
begins by introducing the concept of standard input and output using the
“input()” and “print()” functions, respectively. However, for data storage
beyond the runtime of a program, files serve as the primary medium. Python

provides built-in functionalities to read from and write to files effectively.

To interact with files, you employ the “open()” function, which requires the
file's path—either absolute or relative—and its name. The path
differentiation between operating systems like Unix/Linux (forward slashes)
and Windows (back slashes) is addressed, but Python allows using forward

dashes universally, even on Windows systems.

Upon opening afile with “open(), you get afile object that lets you perform
file operations. The ‘read()" method of this object can be used to fetch the
complete file content. The position within the file is tracked automatically,
and methods like "tell()” (to know the current byte position) and “seek()” (to
move to a specific byte) enable precise control over reading file content,
especially important when dealing with multi-byte charactersin formats like
UTF-8.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Using files in Python necessitates closing them after operations to free up
system resources and avoid errors like "Too many open files." This can be
done manually with “close()” or, more conveniently, using a context
manager (with the "with® statement) which handles the closing automatically

after the block execution or if an exception occurs.

The chapter further explores reading files line-by-line using a ‘for™ loop,
which directly iterates over each line in the file. Unwanted blank lines can be

managed using the “rstrip()” method to remove trailing newline characters.

File modes in Python define the nature of operations you wish to
perform—read ('r’), write (w"), create ("x), append ("a’), with additional
binary ("b") and text ("'t") mode specifications. Understanding these modesis
crucia asthey dictate how the file is manipulated. The default mode opens

filesin read-only text mode.

Writing to afile involves using the “write()” method of the file object, taking
care to include newline characters ("\n" or "\r\n") to ensure desired text
formatting across different operating systems. Binary files store data as
bytes, not characters, and operate differently, typically used with images,

videos, and other non-text formats.

Handling exceptionsisvital in file operations since files may be unavailable

or inaccessible. The "try/except” block isintegrated for ensuring the program

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

can manage such scenarios gracefully, safeguarding against crashes due to

errorslike missing files.

A review section consolidates the main points: using the “open()” function
with modes, ensuring file closure, reading files by lines, specifying file
modes, writing data, and anticipating exceptions. This comprehensive
understanding is supported by exercises encouraging practical application of
the concepts, such as line-prepended file reading and al phabetical sorting of
data.

For further learning, additional resources are provided, including official
Python documentation regarding input/output handling, exception handling,

and the “open()” function.

Overall, this chapter equips readers with foundational skillsin file
operations, integral for developing applications that persist data between
executions, helping them understand not just the 'how," but also the 'why"

behind these operations.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 11 Summary: - Modules and the Python
Standard Library

Chapter 9 delves into the functionality of Python modules and the extensive
Python Standard Library. A Python moduleis essentially afile with the
.py” extension that can contain variables, functions, and classes. To utilize a
module, you import it using the "import™ statement, enabling accessto its
attributes and methods. For example, the "time module offers methods like
“asctime()” and attributes like “timezone', which can be accessed by
“time.asctime()” and "time.timezone’, respectively. When importing only
specific components rather than the entire module, you can use the syntax
“from module_name import method _name’, allowing direct access without
prefixing the module name. Though importing everything from a module
using an asterisk ("*°) is possible, it's discouraged due to potential conflicts

with existing function names or variables.

The "dir()" function allows a peek inside a module to discover its available
attributes, methods, and classes. Python searches for modules in predefined
paths listed in “sys.path’. If a module cannot be found, Python raises an
“ImportError’. Users can customize the search path by appending directories

to “sys.path” or using the 'PY THONPATH" environment variable.

The Python Standard Library is a treasure trove of modules for common

tasks—handling CSV fileswith the "csv" module, logging with the “logging

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

module, and making HTTP requests using "urllib.request™ and “json’. Before
creating custom code, exploring thislibrary is recommended. The
“sys.exit()” method is onetool that can be utilized from the library to

gracefully terminate a program with an optional exit code when errors occur.

Creating custom modules involves writing reusable codein ".py" files. These
can be imported like any built-in module. For example, a simple modulefile
like "say_hi.py can containa say _hi()" function that prints a greeting.
When the module isimported, its functions are available for use. Python also
allows scripting to behave differently based on how it is used—if run asa
script or imported as a module—by leveraging the specia variable

" _name_ . Atypica constructis’if _name ==' man_ ", which

directs what should execute if the script is run directly.

The chapter concludes with areview of concepts. how to import modules
and navigate Python's standard library and search paths, create custom
modules, and use Python's built-in functionality to facilitate common

programming tasks.

Exercises suggest updating a program to make it both executable as a
standalone script and as a module. Additional resources are provided to
further explore Python's immense capabilities, and an appendix highlights

trademarks of software products mentioned in the chapter.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Leveraging the Python Standard Library

Critical Interpretation: By harnessing the power of the Python
Standard Library, you open up aworld of possibilitiesto streamline
and ssimplify your projects. Imagine the endless potential if, instead of
reinventing the wheel each time you set out to tackle a new
programming challenge, you could draw from arich repository of
pre-existing tools. The Python Standard Library functions as your
ever-ready toolbox; whether you're managing data, networking, or
performing complex mathematical calculations, everything you need
isright at your fingertips. Furthermore, learning to navigate this
library effectively can inspire a mindset of efficiency and creativity in
your daily life. Just as you utilize these modules to enhance your
coding expertise, consider the ways you can embrace available
resources to innovate and optimize problem-solving across different

aspects of your life.

More Free Book %‘\ R
Scan to ov.vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

