
Reinforcement Learning PDF (Limited
Copy)

Richard S. Sutton

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Reinforcement Learning Summary
Learning optimal decisions through trial and error.

Written by Books1

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the book

"Reinforcement Learning" by Richard S. Sutton is a seminal work that

delves into the fascinating world of how agents can learn to make decisions

and improve their performance through interactions with their environment.

Grounded in the principles of psychology and neuroscience, the book

provides an insightful framework for understanding the mechanisms of

learning by trial and error, emphasizing the importance of rewards in

shaping behavior. Whether you're an aspiring AI researcher or a curious

reader looking to grasp the intricacies of intelligent systems, Sutton's

engaging prose, clear explanations, and rich examples will guide you

through the complexities of reinforcement learning, inspiring you to explore

the potential of algorithms that learn and optimize in real-life situations.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the author

Richard S. Sutton is a pioneering figure in the field of artificial intelligence,

particularly known for his foundational work in reinforcement learning (RL).

He is a professor at the University of Alberta, where he has significantly

contributed to the understanding and development of algorithms that enable

machines to learn from their interactions with environments. Sutton's

research has profoundly influenced not only the theoretical aspects of RL but

also its practical applications across various domains, including robotics,

game playing, and decision-making systems. His collaboration with Andrew

G. Barto resulted in the seminal book "Reinforcement Learning: An

Introduction," which has become a cornerstone text for students and

professionals alike, solidifying his reputation as one of the foremost experts

in the field.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Summary Content List

Chapter 1: 1 Introduction

Chapter 2: 2 Evaluative Feedback

Chapter 3: 3 The Reinforcement Learning Problem

Chapter 4: 4 Dynamic Programming

Chapter 5: 5 Monte Carlo Methods

Chapter 6: 6 Temporal Difference Learning

Chapter 7: Part III: A Unified View

Chapter 8: 7 Eligibility Traces

Chapter 9: 8 Generalization and Function Approximation

Chapter 10: 9 Planning and Learning

Chapter 11: 10 Dimensions

Chapter 12: 11 Case Studies

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 1 Summary: 1 Introduction

Chapter 1: Introduction to Reinforcement Learning

The introduction posits that learning occurs through interaction with the

environment, a fundamental human experience exemplified in simple actions

like an infant waving its hands. Interactions help us understand

cause-and-effect relationships, paving the way for goal-directed behavior,

such as driving a car or conversing. The book explores this concept through

the lens of reinforcement learning, which emphasizes learning from

interaction rather than relying on explicit instruction. Here, the focus shifts

to designing machines capable of solving learning challenges efficiently in

scientific or economic domains, using a specific framework known as

reinforcement learning. This approach is set apart from other machine

learning techniques by its focus on maximizing numerical rewards from an

agent's actions.

1.1 Reinforcement Learning

Reinforcement learning (RL) is explored as a method where an agent learns

to associate situations with actions to maximize a numerical reward signal.

Unlike supervised learning, where an external supervisor provides guidance,

RL relies on the agent discovering which actions yield rewards through trial

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

and error. The key characteristics of RL include delayed rewards and a

search process that emphasizes the balance between exploration (trying new

actions) and exploitation (favoring known rewarding actions). This section

establishes a foundational understanding of the RL problem, highlighting the

need for the agent to sense environmental states and make decisions to

achieve its goals. Thus, RL provides a more holistic perspective on

task-solving compared to traditional machine learning approaches.

1.2 Examples of Reinforcement Learning

To illustrate reinforcement learning, several practical examples are provided:

- A master chess player uses strategic thinking and intuition to make moves.

- An adaptive controller optimizes the operation of a petroleum refinery

under variable conditions.

- A gazelle calf instinctively learns to run shortly after birth.

- A mobile robot decides whether to explore or return to its charging station

based on previous experiences.

- A person preparing breakfast demonstrates a complex series of conditional

behaviors driven by interdependent goals.

All these scenarios share essential elements of reinforcement learning: an

active agent interacts with an uncertain environment, striving to achieve

explicit goals while learning from both successful and unsuccessful actions.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

1.3 Elements of Reinforcement Learning

A reinforcement learning system comprises four components:

1. Policy: The strategy the agent employs to decide actions based on

 observed states.

2. Reward Function: A measure that assesses the desirability of specific

 state-action pairs, guiding the agent towards beneficial behaviors.

3. Value Function: Reflects the long-term value of states, predicting

 future rewards rather than focusing solely on immediate reinforcement.

4. Model of the Environment (optional): An internal representation that

 allows the agent to predict outcomes of actions, facilitating planning.

Understanding how these components interact is critical for developing

effective reinforcement learning systems. While primarily centered around

learning from experience, reinforcement learning can also intersect with

methods from optimal control, adding depth and potential to its applications.

1.4 An Extended Example: Tic-Tac-Toe

This section delves into the game of Tic-Tac-Toe, serving to contrast

reinforcement learning with classical techniques. A reinforcement learning

approach to this game involves establishing the value of each game state

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

based on winning probabilities. The agent learns through repeated gameplay

against an imperfect opponent, refining its policy by adjusting the state

values during matches. Notably, this approach favors a learning mechanism

that reflects individual state evaluations, contrasting with evolutionary

algorithms that assess entire policies only at the end of many games. Such

reinforcement learning methods facilitate real-time learning and improve

performance through ongoing interaction, ultimately yielding an effective

strategy against the opponent.

1.5 Summary

Reinforcement learning emerges as a compelling approach to goal-directed

learning through direct environmental interaction, avoiding dependency on

structured supervision. It encompasses a formal framework outlining states,

actions, and rewards, encapsulating crucial elements like cause and effect

and the existence of uncertainty. The emphasis on value functions within

reinforcement learning allows for a more efficient exploration of policy

spaces, setting it apart from evolutionary methods that lack this dimension.

1.6 History of Reinforcement Learning

This section traces the dual roots of reinforcement learning in trial-and-error

learning — originating from psychology — and optimal control using

dynamic programming and value functions. Early studies in psychology

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

established foundational ideas around how behavior is shaped through

positive and negative reinforcement, while significant advances in control

theory contributed structured methodologies. The convergence of these

fields throughout the late 20th century enriched reinforcement learning's

development, leading to contemporary methodologies that utilize principles

from both areas effectively.

1.7 Bibliographical Remarks

The chapter concludes with references to key literature and prior works that

have shaped the understanding and development of reinforcement learning.

Scholars like Sutton have been pivotal in defining core tenets, while other

researchers have contextualized reinforcement learning within a broader

array of disciplines, including statistics and control theory. This groundwork

emphasizes the continued evolution of reinforcement learning as it intersects

with diverse research fields.

This summary captures the essential themes and developments discussed in

the chapters, linking them coherently while integrating relevant background

information on reinforcement learning concepts, applications, and historical

context.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Learning through interaction with the environment is

essential

Critical Interpretation: Embrace the idea that your growth and

understanding come not from rigid instructions but from your

interactions with the world around you. Whether it’s the small

successes from a new recipe or the lessons learned from failures in a

conversation, every trial contributes to your personal development.

Like a child learning to wave their hands or a chess player perfecting

their strategy, you too can maximize your potential by exploring,

making mistakes, and adapting based on the environment. This

journey of discovery not only leads to mastery but instills resilience

and adaptability in your approach to challenges, inspiring you to

actively shape your path forward.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 2 Summary: 2 Evaluative Feedback

In this chapter, Richard Sutton delves into the fundamental concepts of

 reinforcement learning (RL), emphasizing the distinct nature of evaluative

feedback, which assesses actions based on their outcomes rather than

instructing the correct ones. This evaluative feedback necessitates a

trial-and-error exploration to discover effective behaviors, contrasting it with

supervised learning, where the correct action is directly provided.

The chapter primarily centers on the n-armed bandit problem—a scenario

where a learner selects from multiple options, each yielding rewards based

on probability distributions. The goal is to maximize cumulative rewards

over time, akin to playing various levers of a slot machine to identify the

best one. The problem poses a conflict between exploration (trying

less-certain actions) and exploitation (favoring the best-known action).

Key Concepts:

1. n-armed Bandit Problem: Analogous to playing a slot machine with

 multiple levers, the learner chooses actions to maximize expected rewards

over a series of trials. The expected value for each action is unknown,

making estimation necessary.

2. Action-Value Methods: These methods estimate action values based

 on the average rewards received from previous selections, introducing

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

algorithms such as greedy and epsilon-greedy methods for selection. The

epsilon-greedy strategy chooses to explore occasionally, ensuring all actions

are evaluated over time.

3. Softmax Action Selection: A refinement over epsilon-greedy, this

 method selects actions based on a probability distribution that favors actions

with higher estimated values. The "temperature" parameter determines the

level of exploration versus exploitation.

4. Evaluation vs. Instruction: Sutton distinguishes evaluative feedback,

 which provides insight into the effectiveness of actions based purely on

outcomes, from instructive feedback, which points to the correct actions

explicitly. This distinction clarifies the unique challenges posed in pure

reinforcement learning scenarios.

5. Incremental Implementation: The chapter discusses how to efficiently

 compute action values using sample averages with an incremental approach,

avoiding the accumulation of burdensome memory requirements.

6. Nonstationary Environments: The importance of adapting learning

 methodologies to situations where action values change over time is

highlighted, advocating for techniques that weight more recent rewards more

heavily.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

7. Optimistic Initial Values: By starting action value estimates at higher

 values, Sutton illustrates an effective exploration strategy, encouraging

early exploration at the potential cost of immediate performance.

8. Reinforcement Comparison: This method bases action selection on

 comparisons to a reference reward level, dynamically adjusting action

preferences based on recent evaluations.

9. Pursuit Methods: These combine estimates of action values with

 strategies that maintain current preferences (proportions for selecting

actions) focused on the currently best-performing actions.

10. Associative Search: Extending the discussion to associative tasks

 where action selection depends on situational context, positioning it as an

intermediate stage leading to complex reinforcement learning problems.

By exploring these concepts, the chapter establishes a foundation for later

discussions on more complex reinforcement learning challenges, preparing

the reader for a deeper engagement with both theory and practice in RL. It

concludes by noting that while classic methods explored herein provide

significant insight, they need to evolve for more complex scenarios, paving

the way for novel approaches to balancing exploration and exploitation in

future studies.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Exploration vs. Exploitation

Critical Interpretation: Imagine standing at a crossroad in life, faced

with the choice to either embrace new opportunities or stick to the

path you know best. The concept of exploration versus exploitation

from Sutton's chapter can resonate with you deeply. It inspires a

mindset of curiosity, urging you to venture beyond your comfort zone

and take calculated risks to discover uncharted territories of growth.

By exploring new hobbies, careers, or relationships, you may find

hidden passions and opportunities that enrich your life's journey.

However, it also reminds you to leverage your strengths and past

experiences, ensuring a balance between the familiar and the

unknown. In this delicate dance, you learn that both exploration and

exploitation are vital to maximize the rewards life has to offer.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 3 Summary: 3 The Reinforcement Learning
Problem

Chapter 3: The Reinforcement Learning Problem

In this chapter, the authors introduce the key problem at the heart of

reinforcement learning (RL): how agents learn to make decisions through

interaction with their environment to achieve specific goals. The chapter

opens with a broad definition of the RL problem and emphasizes its wide

application across various fields.

3.1 The Agent-Environment Interface

The core interaction in RL occurs between the agent, which is the learner

 or decision-maker, and the environment, encompassing everything

 external to the agent. The agent acts by selecting actions based on

perceptions of the environment's state, which evolves in response to these

actions. Crucially, the environment provides rewards, feedback signals the

 agent aims to maximize over time. A thorough specification of an

environment outlines a specific task.

At each discrete time step, the agent observes the state \(s_t \), takes an

action \(a_t \), receives a reward \(r_t \), and transitions to a new state \(

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

s_{t+1} \). The agent employs a policy, a probability mapping from states

 to actions, adjusting this policy based on learned experiences to maximize

cumulative rewards.

The flexibility of this framework allows its application to diverse problems,

from controlling a robotic arm’s movements to making high-level strategic

decisions. The text warns against overly simplistic boundaries between the

agent and environment, suggesting that many mechanistic components

involved in action (e.g., muscles, motors) should be considered part of the

environment rather than the agent itself.

3.2 Goals and Rewards

The agent's primary objective is to maximize its long-term cumulative

rewards, formalized as a single numerical reward signal. Various tasks

generate distinct reward structures. For example, rewards can be based on

achieving specific goals (like navigating mazes) or avoiding negative

outcomes (like colliding with obstacles). The design of the reward structure

is pivotal; it must align with desired agent behavior without incorporating

prior knowledge on how to achieve the goal, thereby preventing the agent

from learning suboptimal strategies.

3.3 Returns

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

To quantify its objectives, the agent calculates the return, a function of

 received rewards over time. The return is defined as a cumulative sum of

rewards for episodic tasks (where interactions terminate after finite episodes)

or as a discounted sum for continual tasks (which persist indefinitely). The

discount factor \(\gamma \), which lies between 0 and 1, influences the

present value of future rewards, reinforcing the need for the agent to balance

immediate and future gains.

For examples, tasks like pole balancing can be structured as either

 episodic or continual, showcasing how reward schemes drive agent

behavior. In episodic tasks, the return can be straightforward, while in

continual tasks, the discounting of future rewards becomes essential.

3.4 A Unified Notation for Episodic and Continual Tasks

The chapter advocates a unified notation to encompass both episodic and

continual tasks, facilitating discussion of their similarities and differences.

By treating terminal states as absorbing states that generate zero rewards,

one can derive a consistent equation for returns applicable across various

task types.

3.5 The Markov Property

The Markov property stipulates that the future state and reward depend

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 only on the current state and action, not on prior states. A state

representation is deemed Markov if it retains all relevant past information

essential for predicting future actions and rewards. In this regard, the

structure and richness of state representations are crucial for effective

decision-making.

3.6 Markov Decision Processes

The models utilized in RL that adhere to the Markov property are termed Ma

rkov Decision Processes (MDPs). Finite MDPs, with a restricted number

 of states and actions, form the foundation for many reinforcement learning

theories. Each MDP is characterized by a defined set of states, actions,

transition probabilities, and expected rewards.

3.7 Value Functions

Value functions are central to RL strategies, estimating the expected return

for each state or state-action pair under a specific policy. These functions

allow agents to evaluate their decisions and are foundational for algorithms

that drive learning in the RL paradigm.

3.8 Optimal Value Functions

An optimal policy maximizes expected returns across all states, guided by

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

optimal value functions. For finite MDPs, optimal value functions and

corresponding policies can be identified through their consensus on expected

returns. Policies that are greedy with respect to these optimal values define

optimal strategies for agents.

3.9 Optimality and Approximation

While agents strive for optimal policies, practical constraints such as

computational power and memory restrictions often necessitate

approximations of these ideals. The chapter highlights the balancing act of

learning: agents should concentrate their efforts on frequently encountered

states for effective policy learning.

3.10 Summary

The chapter concludes by summarizing the elements of the RL framework,

underscoring the necessity for agents to learn from interactions to maximize

goal-directed behavior. It encapsulates the iterative process of refining

policies based on reward feedback, the importance of defining tasks within

MDPs, and the pursuit of efficiency and optimality amidst practical

constraints.

3.11 Bibliographical and Historical Remarks

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

The authors trace the foundational concepts of reinforcement learning to

Markov decision processes and delve into historical influences from

psychology and control theory, attributing much of the terminology and

formulations in RL to earlier works in these fields. They argue that while

various methods can approximately solve the reinforcement learning

problem, the journey of finding optimal solutions remains a vital area of

inquiry and development in artificial intelligence.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 4: 4 Dynamic Programming

Chapter 4: Dynamic Programming

Overview:

Dynamic Programming (DP) encompasses a family of algorithms designed

to compute optimal policies in a given environment modeled as a Markov

Decision Process (MDP). While classical DP methods assume a perfect

model and can be computationally intensive, they are foundational to

understanding various reinforcement learning techniques explored

throughout this book. This chapter introduces key concepts within DP,

focusing on finite MDPs, value functions, and iterative methods for policy

evaluation and improvement.

4.1 Policy Evaluation:

The process of policy evaluation involves determining the state-value

function \(V^\pi(s) \) for a specified policy \(\pi \). The equation \(V^\pi(s)

= \sum_{a \in A} \pi(a|s) \sum_{s'} P(s'|s, a)(R(s,a) + V^\pi(s')) \) defines

how the expected returns depend on the actions taken under the policy. If the

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

environment is well-defined, this leads to a system of simultaneous linear

equations. Although solving this can be direct, iterative approaches are

preferred, where successive approximations of \(V \) converge to \(V^\pi \)

using the Bellman equation. Full backups—updating the value of states

based on all possible future states—are a core operation here. An iterative

policy evaluation algorithm is detailed, requiring initializing values and

iterating until convergence.

Example: A simplistic gridworld illustrates this concept, where states

 and their values evolve through iterative evaluations until a stable value

function is reached.

4.2 Policy Improvement:

After evaluating a policy, the next step is to determine if adjustments can

yield a better policy. This is assessed by comparing the values of selecting a

new action versus adhering to the current policy. The policy improvement

theorem asserts that a new policy generated from the original (by acting

greedily based on the value function) is guaranteed to be equal to or better

than the prior policy. This process entails defining a new greedy policy \(\pi'

\) that optimizes returns based on the evaluated value function, ensuring

gradual enhancement or convergence to an optimal policy.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

4.3 Policy Iteration:

The iterative cycle of alternating evaluations and improvements gives rise to

a method known as policy iteration. Each iteration guarantees monotonic

improvements toward an optimal policy since only a finite number of

policies exist in a finite MDP. An algorithm is presented that includes both

policy evaluation (from the previous policy's value function) and policy

improvement processes, stimulating rapid convergence and often arriving at

optimal policies swiftly.

Example: Jack's Car Rental problem exemplifies policy iteration in

 action, showcasing how successive policies can lead toward optimal car

allocation decisions based on customer demand.

4.4 Value Iteration:

Value iteration offers a streamlined alternative to policy iteration by

combining policy evaluation and improvement in a single step and

potentially truncating policy evaluation after the first sweep. The core idea is

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

to update the value function using the Bellman optimality equation directly

without waiting for full convergence. This method typically results in faster

convergence to the optimal policy by balancing evaluations of immediate

returns against future rewards.

Example: The Gambler's Problem illustrates value iteration, where

 stakes vary based on capital. The value function and corresponding optimal

policy emerge through iterated updates, demonstrating the transition from

varying capital to strategic betting decisions.

4.5 Asynchronous Dynamic Programming:

In environments with large state spaces, traditional DP methods can be

inefficient due to their reliance on sweeping through all states.

Asynchronous Dynamic Programming (ADP) allows updating states in a

non-systematic manner, offering flexibility and efficiency. This approach

can lead to faster convergence by focusing updates on states most relevant to

current agent experiences, interleaving evaluations and improvements based

on observed trajectories.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

4.6 Generalized Policy Iteration:

The concept of Generalized Policy Iteration (GPI) encapsulates the interplay

between the policy evaluation and improvement processes. Unlike strict

alternation, GPI permits simultaneous adjustments, achieving a collaborative

convergence toward the optimal policy and value function. This principle is

foundational to various reinforcement learning frameworks.

4.7 Efficiency of Dynamic Programming:

Despite DP methods having limitations due to the curse of dimensionality,

they are comparatively efficient for managing large MDPs. Their operational

complexities are polynomial with respect to the number of states and

actions, making them feasible for extensive applications. Asynchronous

methods further enhance adaptability for real-time computation and

interaction, allowing reinforcement learning applications to benefit from

dynamic adjustments.

4.8 Summary:

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

This chapter underscores the fundamental DP algorithms used to solve finite

MDPs, emphasizing the iterative processes of policy evaluation and

improvement as cornerstones of policy iteration and value iteration

techniques. Additionally, asynchronous approaches highlight innovative

strategies to tackle large-scale problems, enhancing the applicability and

effectiveness of these algorithms.

4.9 Historical and Bibliographical Remarks:

The foundational work in DP by Bellman laid the groundwork for many of

these concepts, emphasizing their relevance not only to theoretical research

but also to practical applications in reinforcement learning. Various

historical perspectives offer insight into the evolution of DP methods and

their integration into machine learning paradigms, marking significant

strides in the field.

This polished summary synthesizes the core messages and algorithms of

dynamic programming, catering to an audience seeking a coherent

understanding of the topic's evolution and practical implementation in

reinforcement learning scenarios.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 5 Summary: 5 Monte Carlo Methods

Chapter 5: Monte Carlo Methods

In this chapter, we introduce Monte Carlo methods as a powerful approach

for estimating value functions and discovering optimal policies in

reinforcement learning. Unlike dynamic programming, which demands

comprehensive knowledge of the environment, Monte Carlo methods rely

solely on the experience gained from empirical interactions with either real

or simulated environments. This allows them to yield optimal behaviors

through sampling, making them remarkably effective when exact

probabilistic transition models are infeasible to obtain.

The essence of Monte Carlo methods hinges on learning from complete

episodes in episodic tasks. An episode is a series of states and actions that

culminate in a terminal state, each resulting in a reward. These methods

focus on averaging returns observed after episodes have ended, allowing the

agent to evaluate and revise its policies incrementally by utilizing sample

returns.

5.1 Monte Carlo Policy Evaluation

We begin our exploration with Monte Carlo policy evaluation, which is

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

focused on estimating the state-value function under a given policy. The

state value is defined as the expected return starting from that state. To

estimate this, we average the returns following visits to that state across

multiple episodes. The every-visit method calculates the average from all

visits, while the first-visit method does so from only the first instances of

visits within each episode. Both converge to the expected value as the

number of episodes increases.

For illustration, we consider Blackjack, a card game where strategies dictate

whether to stick or draw more cards based on the values observed. The

state-value function for a given policy, which prescribes certain actions in

specific scenarios, can thus be estimated through extensive gameplay

simulation.

5.2 Monte Carlo Estimation of Action Values

In the absence of a model, estimating the action values becomes crucial. The

Monte Carlo action-value approach averages the returns associated with

state-action pairs, using first-visit and every-visit methods, to steadily

improve action selection policies. Continual exploration is necessary to

ensure a complete picture of action values; thus, employing exploring

starts—the practice of initiating episodes from all possible state-action

pairs—assures that the learning is comprehensive.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

5.3 Monte Carlo Control

Building on the evaluation methods, we shift towards control, where we aim

to discover optimal policies. This involves alternating between policy

evaluation and policy improvement in a process dubbed generalized policy

iteration (GPI). We perform policy evaluation using Monte Carlo methods to

refine the action-value function, then apply a greedy approach to improve

the policy based on these estimates.

5.4 On-Policy Monte Carlo Control

To circumvent the assumptions related to exploring starts, on-policy

methods are introduced. These maintain a soft policy that allows the agent to

continuously explore available actions while learning about the same policy

used for decision making. The implementation of -greedy policies provides a

systematic way to ensure exploration while leaning towards optimal actions.

5.5 Evaluating One Policy While Following Another

A crucial distinction emerges when attempting to estimate the value of a

policy while operating under a different one. This requires the transition

probabilities of actions taken under both policies to be understood relative to

one another. By weighing returns according to their probabilities under the

respective policies, unbiased estimates of the desired values can be formed.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

5.6 Off-Policy Monte Carlo Control

Off-policy methods extend the control capabilities by allowing the learning

process and the policy being evaluated to be decoupled. Here, a behavior

policy generates experiences while an estimation policy is improved upon.

This flexibility allows for the use of a stochastic exploration strategy while

refining a deterministic policy.

5.7 Incremental Implementation

Monte Carlo methods allow for incremental evaluation, reducing

computational overhead. By applying techniques from previous methods, we

can efficiently process episodes, updating averages on a per-return basis

while maintaining computational efficiency over numerous episodes.

5.8 Summary

In sum, the Monte Carlo methods presented provide significant advantages

for reinforcement learning: they necessitate no prior knowledge of the

environment’s dynamics, handle simulated or real-world experiences

effectively, and allow focused evaluation on specific states or state-action

pairs. Throughout this chapter, we’ve established a framework for evaluating

and improving policies iteratively, harnessing the statistical power of

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

sampling to converge towards optimal decision-making strategies.

5.9 Historical and Bibliographical Remarks

We conclude with a historical overview, noting the early applications of

Monte Carlo methods in statistical physics and reinforcement learning, and

highlighting influential works that have shaped our understanding. The

blackjack and soap bubble analogies serve as practical examples of these

concepts in action, providing insight into the utility of Monte Carlo methods

across varying contexts.

As we transition to the next chapter on Temporal-Difference methods, we

look forward to exploring how these methods combine elements from both

Monte Carlo and Dynamic Programming to enhance learning efficacy.

Section Summary

5.1 Monte Carlo
Policy Evaluation

Estimates state-value function by averaging returns from multiple
episodes using every-visit and first-visit methods.

5.2 Monte Carlo
Estimation of
Action Values

Estimates action values by averaging returns of state-action
pairs, necessitating continual exploration through exploring starts.

5.3 Monte Carlo
Control

Seeks optimal policies via generalized policy iteration, alternating
between policy evaluation and improvement.

5.4 On-Policy
Monte Carlo
Control

Uses on-policy methods to ensure exploration of actions while
following the same policy for decision making, employing -greedy
policies.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Summary

5.5 Evaluating One
Policy While
Following Another

Estimates a policy's value while operating under a different policy
by understanding relative transition probabilities and weighing
returns.

5.6 Off-Policy
Monte Carlo
Control

Decouples learning and evaluation policies, using a behavior
policy for experience and improving upon an estimation policy.

5.7 Incremental
Implementation

Reduces computational overhead with incremental evaluation,
updating averages on a per-return basis for efficiency.

5.8 Summary
Monte Carlo methods offer significant advantages with no prior
knowledge of environment dynamics, effective handling of
experiences and focused evaluation.

5.9 Historical and
Bibliographical
Remarks

Provides an overview of the history and applications of Monte
Carlo methods, highlighting their utility and influential works in the
field.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 6 Summary: 6 Temporal Difference Learning

Chapter 6: Temporal Difference Learning Overview

This chapter introduces a fundamental concept in reinforcement learning

known as Temporal Difference (TD) learning, which represents a fusion of

Monte Carlo methods and Dynamic Programming (DP). TD learning stands

out for its ability to learn directly from raw experiences collected during

interaction with the environment, unlike DP which requires a model of the

environment's dynamics. TD methods update their estimates based on other

learned estimates without waiting for a complete episode to finish—a

process referred to as "bootstrapping."

The chapter begins by addressing the policy-evaluation problem, which

focuses on estimating the value function for a given policy. Methods

discussed include TD prediction, which learns from experience similar to

Monte Carlo methods, but with the critical difference that TD methods can

adjust estimates as soon as new reward information is available from the

next time step. TD(0) serves as the simplest TD algorithm, which updates

value estimates based on actual observed outcomes in combination with

existing estimates.

6.1 TD Prediction

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

TD methods learn by making incremental updates to value estimates as

experiences are gathered. In contrast to Monte Carlo methods, which wait

until an entire episode concludes to inform their estimates, TD methods

utilize immediate rewards along with past predictions to refine value

estimates more responsively.

For example, consider the real-world scenario of estimating travel time

home as new information emerges, like traffic conditions. If an unexpected

delay occurs, a TD approach allows for immediate adjustment of estimates,

contrasting with the Monte Carlo approach that would only adjust after the

full experience is complete.

6.2 Advantages of TD Prediction Methods

TD methods offer several advantages over traditional methods like DP and

Monte Carlo. They do not require a model of the environment, allowing for

greater flexibility and online learning capabilities. Additionally, since TD

methods learn from each transition rather than waiting for episode

completion, they can adapt more dynamically to ongoing experiences.

Importantly, TD methods have been rigorously validated to converge

towards the correct value estimates under certain conditions, specifically

ensuring that every state-action pair is visited infinitely often. Empirical

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

comparisons suggest that TD methods often converge faster than Monte

Carlo methods in various applications.

6.3 Optimality of TD(0)

In scenarios where experiences are limited, TD(0) can converge

systematically through batch updating, yet it maintains its strengths through

immediate updates with each experience. Batch versions of TD(0) generally

yield better performance than Monte Carlo methods by providing

certainty-equivalence estimates that indicate the most likely outcomes based

on historical data.

6.4 Sarsa: On-Policy TD Control

Transitioning from prediction to control, the chapter discusses Sarsa, an

on-policy TD control algorithm. Sarsa estimates action-value functions and

requires careful balance between exploration and exploitation. It learns the

values for state-action pairs and incorporates an epsilon-greedy strategy to

encourage exploration while improving the chosen policy.

6.5 Q-learning: Off-Policy TD Control

Q-learning emerges as a pivotal off-policy TD control method. Unlike Sarsa,

it learns the optimal action-value function independent of the policy

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

currently being followed. The flexibility of Q-learning allows it to explore

various state-action pairs, enabling convergence toward an optimal policy

with appropriate conditions.

6.6 Actor-Critic Methods

Actor-critic methods combine aspects of TD learning through dual

structures: the actor (which selects actions) and the critic (which evaluates

those actions). This setup facilitates on-policy learning, where the critic's

feedback serves as a TD error guiding both the actor's and critic's learning

processes.

6.7 R-Learning for Undiscounted Continual Tasks

R-learning addresses the continuous task domain, optimizing for the average

reward per time-step rather than episodic rewards. This method introduces

relative values, encapsulating the nuances of continual control without

explicit episode structures.

6.8 Games, After States, and Other Special Cases

The chapter also touches on specialized learning situations, such as those

found in games, where after-state value functions can provide significant

efficiency benefits by evaluating possible states after an action has been

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

taken. This conceptualization can greatly reduce the complexity in learning

scenarios with known immediate outcomes.

6.9 Conclusions

In summary, the chapter articulates how TD learning encompasses a variety

of methods tailored for both prediction and control problems in

reinforcement learning. Each method, whether on-policy or off-policy,

exhibits unique characteristics and advantages, though they share

foundational principles of TD learning. These methods contribute to a

comprehensive toolkit for navigating complex dynamical systems,

applicable beyond reinforcement learning into domains such as financial

forecasting and behavioral predictions.

6.10 Historical and Bibliographical Remarks

The chapter concludes with a review of the origins and development of TD

learning, highlighting key contributors and foundational theories that have

shaped its current understanding in reinforcement learning contexts. As the

methodologies evolve, the insights gleaned from TD learning hold promise

for future explorations across a spectrum of applications.

Section Summary

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Summary

Chapter 6:
Temporal
Difference
Learning
Overview

Introduction to Temporal Difference (TD) learning, a blend of Monte
Carlo methods and Dynamic Programming, emphasizing its ability to
learn from raw experiences and update estimates through
bootstrapping.

6.1 TD
Prediction

TD methods make incremental updates using immediate rewards and
past predictions, allowing for responsive adjustments, unlike Monte
Carlo which waits for episode completion.

6.2
Advantages of
TD Prediction
Methods

TD methods do not require an environmental model, offering flexibility
and online learning capabilities, and typically converge faster than
Monte Carlo methods.

6.3 Optimality
of TD(0)

TD(0) systematically converges through batch updating, improving
performance over Monte Carlo methods by providing more accurate
estimates.

6.4 Sarsa:
On-Policy TD
Control

Sarsa estimates action-value functions with an epsilon-greedy
strategy to balance exploration and exploitation in an on-policy control
framework.

6.5 Q-learning:
Off-Policy TD
Control

Q-learning learns the optimal action-value function independently of
the current policy, facilitating exploration and convergence to an
optimal policy.

6.6 Actor-Critic
Methods

Combines TD learning with actor-critic structure, allowing on-policy
learning where the critic’s feedback guides the learning of both actor
and critic.

6.7 R-Learning
for
Undiscounted
Continual
Tasks

Focuses on optimizing average rewards per time-step in continual
tasks, introducing relative values for better control without episodic
structures.

6.8 Games,
After States,
and Other

Discusses specialized learning in games using after-state valuations
to enhance efficiency in evaluating outcomes from actions taken.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Summary

Special Cases

6.9
Conclusions

Summarizes the various TD learning methods for prediction and
control, detailing their unique characteristics and relevance to
complex systems.

6.10 Historical
and
Bibliographical
Remarks

Reviews the origins and evolution of TD learning, highlighting
influential contributors and theories vital to its development.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Learning from Immediate Experiences

Critical Interpretation: Imagine navigating through life like a game,

where each decision you make builds on your past experiences in

real-time. The concept of Temporal Difference (TD) learning teaches

you the value of adapting quickly to new information, allowing you to

change your approach based on immediate feedback, rather than

waiting for the final results. This ability to adjust your expectations as

you go—like updating your travel time based on current traffic

conditions—can empower you to face life's uncertainties with

confidence, turning every challenge into a learning experience that

enhances your decision-making process.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 7 Summary: Part III: A Unified View

In Part III of the book, the author, Richard Sutton, aims to present a cohesive

 framework that integrates three fundamental approaches to reinforcement

learning: dynamic programming, Monte Carlo methods, and

temporal-difference learning. While these methods may seem distinct,

Sutton argues that they can be effectively combined to enhance

problem-solving capabilities rather than requiring a choice between them.

This part emphasizes the adaptability and complementary nature of these

techniques, allowing practitioners to flexibly emphasize different methods

based on the specific demands of various tasks or situations.

The chapter begins by introducing the concept of eligibility traces, a

mechanism that serves to unify Monte Carlo and temporal-difference

methods. Eligibility traces allow for the merging of the two approaches by

enabling the updating of action values based on not only the most recent

experiences but also on past experiences, thus enhancing the learning

efficiency.

Next, the discussion includes function approximation, which facilitates

generalization across states and actions. This concept is particularly valuable

in complex environments where the state or action space is too large to

handle explicitly.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

The chapter culminates with the introduction of environmental models,

which leverage the strengths of dynamic programming and heuristic search.

By incorporating models of the environment, learning algorithms can utilize

simulation to plan and optimize strategies.

Overall, Sutton illustrates how these methods can be synergistically

integrated, paving the way for more robust and flexible reinforcement

learning solutions that can be dynamically adjusted based on the specific

context and requirements of a given task.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 8: 7 Eligibility Traces

In Chapter 7, titled "Eligibility Traces," Richard Sutton presents a

 comprehensive overview of a key concept in reinforcement learning that

enhances the efficiency of various temporal-difference (TD) methods.

Eligibility traces serve as a bridge between TD and Monte Carlo methods,

offering a more nuanced approach to learning from experiences.

Overview of Eligibility Traces

Eligibility traces can be viewed from two perspectives: the forward view, w

hich emphasizes their theoretical role in bridging TD and Monte Carlo

methods, and the backward view, which focuses on their mechanistic

 implementation within learning algorithms. These traces act as temporary

records of state or action occurrences, making them eligible for updates

when learning occurs. By maintaining this memory, eligibility traces

effectively aid in the temporal credit assignment problem, allowing agents to

allocate credit or blame to past events based on the most recent TD errors.

n-step TD Prediction

The chapter introduces n-step TD prediction, wherein the learning

 process is generalized through the concept of n-step returns. While

traditional Monte Carlo methods use complete returns and 1-step TD

methods rely on immediate rewards, n-step TD prediction sits in between,

allowing for the incorporation of multiple steps of rewards before updating a

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

value estimate. This flexibility can yield better performance than relying

solely on either extreme.

The Forward and Backward Views

1. Forward View (Section 7.2): This section articulates how backups can

 be formed by averaging various n-step returns to produce a weighted

�c�o�m�b�i�n�a�t�i�o�n�.� �T�h�e� �T�D�(�»�)� �a�l�g�o�r�i�t�h�m�,� �w�h�i�c�h� �i�m�p�l�e�m�e�n�t�s� �t�h�e�s�e� �c�a�l�c�u�l�a�t�i�o�n�s�,

allows for smooth transitions between 1-step and Monte Carlo methods,

enabling the agent to learn effectively depending on the context.

2. Backward View (Section 7.3): In contrast, this section delves into the

 causal implementation of eligibility traces. By updating eligibility traces at

each visited state and using them to modify value estimates based on TD

errors, Sutton provides an efficient way to compute updates without the need

for hindsight. This perspective enables more intuitive understanding and

application in real-time learning scenarios.

Equivalence of Views (Section 7.4)

The chapter establishes the equivalence between the forward and backward

views in offline learning contexts, proving that both lead to identical updates

across algorithms. This alignment reassures practitioners about the

soundness of using either perspective in various circumstances.

Extending to Control Methods

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Sutton outlines how eligibility traces can enhance �S�a�r�s�a�(�»�) (Section 7.5)

 and �Q�(�»�)� �m�e�t�h�o�d�s� �(�S�e�c�t�i�o�n� �7�.�6�)�.� �S�a�r�s�a�(�»�)� �i�n�t�e�g�r�a�t�e�s� �e�l�i�g�i�b�i�l�i�t�y� �t�r�a�c�e�s� �i�n�t�o

 a control framework by respectively applying updates to state-action pairs,

�w�h�i�l�e� �Q�(�»�)� �g�r�a�c�e�f�u�l�l�y� �h�a�n�d�l�e�s� �t�h�e� �c�o�m�p�l�e�x�i�t�i�e�s� �o�f� �o�f�f�-�p�o�l�i�c�y� �l�e�a�r�n�i�n�g� �b�y

adapting how eligibility traces are updated based on action selection.

Actor-Critic Methods (Section 7.7)

The chapter then discusses extending classic actor-critic architectures to

utilize eligibility traces, allowing for concurrent updates to both the actor

and critic components based on a comprehensive strategy tailored for each

state and action pair.

Replacing Traces (Section 7.8)

Sutton presents a variant called replacing traces, where the eligibility trace

 for a state-action pair is reset rather than accumulated upon revisiting,

improving learning efficiency especially in complex tasks.

Implementation Issues (Section 7.9)

The discussion shifts towards practical concerns about implementing

eligibility traces. Sutton addresses the computational efficiency an agent can

achieve by selectively updating only those states with significant traces,

making eligibility traces feasible even on conventional hardware.

Variable Eligibility Traces (Section 7.10)

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

He introduces the notion of varying eligibility traces across episodes or

states, a theoretical advancement that allows for adaptability based on the

reliability of value estimates.

Conclusions (Section 7.11)

Sutton concludes that eligibility traces significantly enhance learning speed,

especially in environments where rewards are delayed or uncertain,

facilitating the utility of TD methods in non-Markovian contexts. By

balancing the mixture of TD and Monte Carlo approaches through eligibility

traces, performance can be improved, albeit requiring careful tuning to avoid

diminishing returns.

Historical Remarks (Section 7.12)

Finally, Sutton offers insights into the historical development of ideas

related to eligibility traces, credit assignment, and their foundational

theories, demonstrating the evolution of thought in reinforcement learning.

This chapter forms a crucial component of Sutton's broader discussion on

reinforcement learning, illustrating how sophisticated implementations and

theoretical advancements can contribute to more effective learning

algorithms.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 9 Summary: 8 Generalization and Function
Approximation

Chapter 8: Generalization and Function Approximation

In this chapter, we explore the limitations of using tabular representations

for value functions in reinforcement learning, particularly as the state-action

space grows large or continuous. A primary concern is generalization: how

can we extend learning from finite experiences to effectively estimate the

value of unencountered states? This is vital because most real-world tasks

will include situations that the agent has not faced and will require

generalization from similar, previously discovered states.

To address these complexities, we can leverage established methods from

machine learning for function approximation. The goal is to construct a

generalized value function that approximates true value predictions across a

larger state space. This approach will often entail combining reinforcement

learning techniques with existing supervised learning methods, such as those

involving regression, neural networks, or decision trees.

8.1 Value Prediction with Function Approximation

We start with value prediction—estimating the state-value function from the

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

agent's experiences using its policy. This time, rather than using a table to

represent values, we employ a parameterized function whose outputs depend

on a vector of parameters that can change over time. This allows us to

generalize the estimated values based on various inputs.

For example, in an artificial neural network, the weights can adjust the

function's output dynamically, impacting the value estimation across many

states simultaneously. When we update the estimate for a state based on

experience, this change systematically generalizes to other states, which is

crucial for effective reinforcement learning.

Each update or "backup" can be viewed as providing an example of desired

behavior for the function approximator, thereby allowing it to adjust and

improve its predictions. However, not all approximation methods are equally

suited for reinforcement learning, especially considering the need for online

learning and handling non-stationary data.

To evaluate function-approximation methods, we consider performance

measured by mean squared error (MSE), which quantifies how closely our

predictions align with the actual values. The distribution of encountered

states while interacting with the environment plays a significant role in this

assessment, as focusing learning on the 'on-policy' distribution—states the

agent actually experiences—tends to yield better results than striving to

minimize errors uniformly across all states.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

8.2 Gradient-Descent Methods

We delve into gradient-descent methods, a fundamental approach for

optimizing function approximations within reinforcement learning. Here, the

aim is to iteratively adjust the parameters of our value function's

approximator in the direction of the gradient, which indicates how to reduce

error on the observed examples.

The process involves observing new examples and updating the

approximation by a small amount computed from the gradient of the error.

The core principle is to ensure that the learning maintains a balance,

allowing for generalization rather than overfitting to the noise in the training

data.

We further extend this approach to handle cases where the exact outputs are

approximations or biased estimates instead of the true values. In such

scenarios, as long as these estimates maintain unbiasedness, we can still

achieve convergence towards local optima, although the specific guarantees

can vary based on the approximator used.

8.3 Linear Methods

A special case within function approximation occurs when we represent our

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

function as a linear combination of features derived from the states. In this

model, every state has a corresponding feature vector, and the overall

function is formed from a weighted sum of these features. This simplicity

allows us to easily compute gradients and guarantees convergence to optima.

Because linear approximators are mathematically straightforward, they often

provide strong convergence results. However, the selection of features to

represent states is critical; they should encapsulate meaningful distinctions

relevant for decision-making.

Collectively, these methods can exhibit efficient learning if constructed

appropriately, balancing both computational resources and the richness of

approximating complex functions.

8.3.1 Coarse Coding

One feature-based approach involves coarse coding, where features

correspond to broader categories or regions of the state space—represented

by overlapping receptive fields or "circles." The level of generalization

across states depends on how many features overlap, thus influencing

learning outcomes.

8.3.2 Tile Coding

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Tile coding, a refined version of coarse coding, systematically partitions

input space into overlapping tiles, ensuring only one feature is active per tile

for any state. This simplification allows for more intuitive learning

adjustments and helps streamline updates during the training process,

favoring fast and effective learning.

These foundational approaches reinforce the importance of feature selection

and representation in reinforcement learning, ultimately shaping how well an

agent can generalize its learning from encountered experiences to previously

unseen states.

Section Summary

Chapter
Overview

This chapter discusses the limitations of tabular value functions in
reinforcement learning, emphasizing the importance of
generalization for large or continuous state-action spaces.

Function
Approximation

Function approximation allows for estimating value functions
dynamically, using machine learning techniques like neural
networks to extend learning to unencountered states.

Value Prediction
Value prediction involves estimating state values using
parameterized functions instead of tables, generalizing updates to
impact multiple states.

Performance
Evaluation

Performance is evaluated using mean squared error (MSE), with a
focus on 'on-policy' distributions for better learning outcomes.

Gradient-Descent
Methods

Gradient-descent methods optimize function approximations
through iterative parameter adjustments, balancing generalization
and noise management.

Linear Methods Linear methods represent value functions as weighted sums of

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Summary

features, offering straightforward computation and convergence
guarantees, contingent on meaningful feature selection.

Coarse Coding Coarse coding uses broader feature categories for states,
influencing generalization based on overlapping features.

Tile Coding Tile coding refines coarse coding by creating overlapping partitions
of input space, promoting effective learning with simpler updates.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: The importance of generalization in learning from

experience

Critical Interpretation: Imagine a moment in your life where you've

faced a challenge for the first time. The knowledge and outcomes from

prior experiences can guide you through unfamiliar situations, just like

an agent in reinforcement learning learns to handle unseen states

through generalization. By recognizing that past lessons—even from

unrelated events—can influence future decisions, you can cultivate

resilience and adapt your strategies for new challenges. Embracing

this perspective not only enhances your capacity to learn but also

empowers you to navigate life's complexities with greater confidence

and wisdom.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 10 Summary: 9 Planning and Learning

Chapter 9: Planning and Learning

In this chapter, we explore a unified perspective on planning and learning in

artificial intelligence, particularly emphasizing how methods requiring a

model of the environment (planning) and methods that operate without a

model (learning) can be integrated. Despite their differences, both

approaches focus on computing value functions through simulations of

future events, which are essential for updating these functions. We aim to

bridge the gap between these two categories, previously presented as distinct

in earlier chapters.

9.1 Models and Planning

We define a model as any tool that allows an agent to predict the

 outcomes of its actions within an environment. This model can either be

distribution-based, providing all possibilities with their probabilities, or

sample-based, generating one potential outcome at a time. For instance,

modeling the sum of dice could involve listing all possible sums versus

providing just one sample sum.

Planning is defined as any process leveraging this model to develop or

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 refine a policy for interacting with the environment. There are two main

planning methodologies:

1. State-space planning, which searches through potential states for

 optimal policies.

2. Plan-space planning, which explores complete plans but is less

 efficient for stochastic control problems, focusing more on search

dimensions than classical reinforcement learning.

Ultimately, we illustrate that both planning and learning leverage similar

structures; they rely on computing value functions through backup

operations applied to simulated experiences.

9.2 Integrating Planning, Acting, and Learning

This section introduces Dyna-Q, an architecture that integrates online

 planning with real-time interaction with the environment. In this model, real

experiences can improve the model and the value function through direct

 reinforcement learning, while also updating policies based on simulated

experiences from the model.

The relationships among experience, model improvement, values, and policy

are explored, emphasizing both direct and indirect methods of learning.

Direct reinforcement learning is straightforward but limited by the number

of real interactions, while indirect methods leverage the model for

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

potentially more thorough improvement with fewer actual encounters.

In Dyna-Q, all processes of planning, acting, model learning, and direct

reinforcement can operate concurrently, optimizing efficiency and

responsiveness. The actions taken are guided by previously gathered

experiences, making continual refinements based on both real and simulated

data.

9.3 When the Model is Wrong

We examine the implications of an inaccurate model, which can occur for

several reasons: stochasticity in the environment, insufficient samples, or

changes in conditions. If the model is incorrect, it may lead to suboptimal

policies that could either reveal discrepancies and help update the model or

lead to complacency regarding known paths.

We provide examples, such as a Blocking Maze where an originally

 correct path becomes ineffective, forcing exploration of new options. The

need for exploration without compromising performance ties into the

conflict between exploration (gaining new knowledge) and exploitation

(utilizing current knowledge).

An interesting solution involves implementing an exploration bonus system

that encourages the agent to revisit and test less frequently taken actions,

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

effectively adapting the model in reaction to its performance.

9.4 Prioritized Sweeping

In predictive systems like Dyna-Q, backups are often randomly generated,

but this can be inefficient. Prioritized sweeping focuses on updating those

 state-action pairs whose values have changed significantly, prioritizing

them in order to streamline the backup process.

By tracking recent value changes, the algorithm can more effectively

propagate updates through related state-action pairs. This method improves

learning speeds considerably, as demonstrated in maze scenarios, where it

reduces computational demands by focusing on the most critical updates.

9.5 Full vs. Sample Backups

In discussing backup methods, we illustrate the trade-offs between full

 backups (considering all possibilities) and sample backups (using a single

 prediction). Full backups yield accurate updates but require substantial

computational resources, making them impractical in environments with

many states.

As a general rule, when the potential environment has high stochastic

branching factors, using sample backups offers better efficacy, allowing for

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

improvements across a wider range of state-action pairs even if the accuracy

per update is slightly lower.

9.6 Trajectory Sampling

We present trajectory sampling as a means of distributing backups

 derived from interactions under the current policy. Unlike exhaustive

methods, which might backtrack through all states, trajectory sampling

contextualizes backups within relevant paths through the state space,

fostering more efficiency in the learning process.

Initial results show that this method significantly speeds up convergence,

particularly in larger tasks where a uniform retrieval of all state-action pairs

may lead to wasted computational resources.

9.7 Heuristic Search

Heuristic search emerges as a critical approach in planning, focusing on

action selection rather than approximate value function updates. Through the

use of a backward search tree from possible future states, heuristic methods

can refine action choices significantly without compromising computational

efficiency.

While it emphasizes immediate actions, heuristic search informs potential

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

backups distribution, allowing for more focused and relevant evaluations of

the current task at hand.

9.8 Summary

The chapter reiterates the close ties between planning and learning, where

both methodologies can be blended seamlessly. Incremental updates allow

for efficient collaboration between various processes, with the notion of

backups becoming a central theme in driving improvements across diverse

situations.

We underline the dimensions of variation that influence planning and

learning, particularly how to distribute backups effectively and exploit

various sizes of backup operations. These insights pave the way for future

research on optimization strategies that leverage both classical planning and

modern reinforcement learning techniques.

9.9 Historical and Bibliographical Remarks

The concepts discussed are the product of ongoing research efforts by the

authors and various influences, reflecting on the evolving nature of AI

planning and learning. Historical studies in psychology further contextualize

the motivations behind developing these frameworks, leading to novel

insights into the cognitive processes that underlie intelligent behavior.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

In this chapter, Richard Sutton highlights the interconnectedness of planning

and learning, offering a framework for understanding and developing

artificial intelligence methodologies. Through discussions on models,

integration, errors, and heuristic strategies, the reader glean insights into

optimizing decision processes within complex environments.

Section Summary

9.1 Models
and Planning

Defines models as tools for predicting action outcomes in
environments. Discusses two planning approaches: state-space
planning (optimal policy search) and plan-space planning (exploring
complete plans), illustrating their reliance on value function
computations.

9.2 Integrating
Planning,
Acting, and
Learning

Introduces Dyna-Q, linking online planning with real-time interactions.
Highlights how direct reinforcement learning and model improvements
enhance policy updating based on both real and simulated
experiences.

9.3 When the
Model is
Wrong

Examines consequences of an inaccurate model leading to
suboptimal policies. Discusses the exploration-exploitation conflict and
introduces an exploration bonus system to encourage testing of
less-frequent actions.

9.4 Prioritized
Sweeping

Focuses on updating significant state-action pairs in predictive
systems, enhancing efficiency by tracking valuable changes for
backups, which improves learning speeds in complex scenarios.

9.5 Full vs.
Sample
Backups

Delivers a trade-off analysis between full backups (accurate but
resource-intensive) and sample backups (less precise but efficient),
emphasizing sample backups in highly stochastic environments.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Section Summary

9.6 Trajectory
Sampling

Describes trajectory sampling as a method for context-specific backup
distribution, enhancing learning efficiency without exhaustive
exploration of all states, leading to quicker convergence.

9.7 Heuristic
Search

Portrays heuristic search as focusing on action selection via backward
search trees to refine action choices efficiently without sacrificing
computational speed.

9.8 Summary
Reiterates the integration between planning and learning,
emphasizing incremental updates and the critical role of backups in
improving processes across various environments.

9.9 Historical
and
Bibliographical
Remarks

Reflects on the evolution of AI planning and learning concepts
influenced by psychological studies, contextualizing the motivations
for these frameworks and their implications for understanding
intelligent behavior.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 11 Summary: 10 Dimensions

Chapter 10: Dimensions of Reinforcement Learning

In this chapter, the authors synthesize a comprehensive framework for

understanding reinforcement learning (RL) as an interconnected set of ideas

rather than a disjointed collection of methods. By framing RL through

various dimensions, they aim to map the vast potential method space,

thereby advancing a more lasting understanding of the field.

10.1 The Unified View

The text outlines three foundational ideas that unify the RL methods

discussed throughout the book:

1. Value Function Estimation: All RL methods aim to estimate value

 functions, which represent the expected rewards of being in certain states or

taking certain actions.

2. Backup Mechanisms: These methods improve value estimates by

 backing up values along trajectories of states, whether they are actual

experiences or hypothetical scenarios.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

3. Generalized Policy Iteration (GPI): This strategy involves

 maintaining both an approximate policy and an approximate value function,

continuously improving each based on the other’s performance.

The chapter visually maps RL methods along two primary dimensions of

variation regarding backup methods. The first dimension contrasts sample

 backups (based on a single trajectory) and full backups (derived from all

 possible trajectories), indicating that the former can be employed both with

and without models. The second dimension pertains to depth of backups, w

hich describes how far information is propagated back in terms of

bootstrapping.

The three main RL methods represent corners of this dimensional space:

- Dynamic Programming (DP) in the upper-left (1-step full backups),

- Temporal Difference (TD) methods in the lower-left (sample backups),

- Monte Carlo methods in the lower-right (full-return backups).

Middle-ground approaches include n-step backups and eligibility traces that

balance both depth and sample backup strategies. The discussion also

introduces function approximation as another important dimension,

 wherein methods can range from simple tabular approaches to complex

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

nonlinear techniques.

Additionally, the authors emphasize the significance of distinguishing

between on-policy and off-policy methods. While on-policy methods

 learn the value of the current policy, off-policy methods enable the learning

of a presumed optimal policy, allowing for beneficial exploration.

The chapter concludes by listing several other dimensions of variation in

RL, including:

- Return definitions: Negotiating between episodic or continual tasks

 and the treatment of rewards.

- Action exploration: Strategies for balancing exploration and

 exploitation during action selection.

- Synchronous vs. asynchronous updates: Timing of value function

 updates.

- Elaboration on traces: Deciding between different types of eligibility

 traces.

- Real vs. simulated experience: Weighing the benefits of learning from

 actual versus simulated actions and outcomes.

These dimensions provide a cohesive language for describing and dissecting

a broad array of RL algorithms, laying the groundwork for systematic

exploration.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

10.2 Other Frontier Dimensions

The exploration of RL spaces is ongoing, with considerable research

potential remaining uncharted. The authors highlight that even basic

methods for multi-step backups have not been proven convergent. They also

encourage exploring the complexities within the method space that have yet

to be fully understood.

A critical extension of the RL framework mentioned is the movement

beyond the assumption of a Markov property in state representations.

 Many real-world problems do not adhere to this assumption, and various

approaches—such as Partially Observable Markov Decision Processes

 (POMDPs)—attempt to construct useful representation from

 non-Markov signals. POMDPs utilize observable signals that communicate

information about unobservable states, albeit with increased computational

demands.

The chapter proposes various strategies to improve non-Markov

representations. Some research emphasizes constructing a better

representation from existing signals, while other methodologies adapt to

less-than-ideal representations using statistical methods. This consideration

prompts a look into how learning systems can leverage improved state

representations or specific function approximation techniques.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Moving further, the authors address the potential for enhancing RL through

concepts of modularity and hierarchical learning. They note that many

 human skills do not solely revolve around direct value estimation but

involve an intricate interplay of learned tasks that allow for rapid value

estimation in new contexts. The insights here lean toward the idea that a

robust RL architecture should account for how humans organize information

and their abilities to plan at different abstraction levels.

The chapter closes by pointing out the importance of task structure in RL.

 Many environments feature built-in structures—like action lists or varying

sensor states—that can be harnessed to simplify learning through

independent subproblem solving. Acknowledging the role of task structure

opens avenues for advancing RL through both agent-based learning and

multi-agent systems.

Finally, the authors emphasize that RL should remain a flexible and general

approach to learning from interaction, capable of integrating

teacher-guidance or structured problem hierarchies to enhance learning

efficiency. These discussions unveil a landscape rich with opportunities to

redefine concepts associated with training and teaching within AI and

machine learning.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

This summary connects the key ideas and concepts presented in the chapter

while clarifying the dimensional framework of reinforcement learning, the

challenges ahead, and the substantial potential for future exploration and

development.

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter 12: 11 Case Studies

Chapter 11: Case Studies

In this closing chapter, we explore several case studies illustrating the

complexities and significant potential of reinforcement learning (RL). These

applications, some with noteworthy economic impact, delve into the

incorporation of domain knowledge, representation challenges, and the often

artful nature of developing RL applications. The chapter is structured around

significant applications, emphasizing how they vary in complexity compared

to earlier introduced algorithms.

11.1 TD-Gammon

One of the standout applications of reinforcement learning is TD-Gammon,

developed by Gerry Tesauro, which showcased RL's potential in mastering

backgammon—a game combining skill and chance. Unlike traditional

programs that relied heavily on domain-specific knowledge, TD-Gammon

�l�e�a�r�n�e�d� �t�o� �p�l�a�y� �t�h�r�o�u�g�h� �s�e�l�f�-�p�l�a�y�,� �u�s�i�n�g� �a� �T�D�(�»�)� �a�l�g�o�r�i�t�h�m� �w�i�t�h� �a� �n�e�u�r�a�l

network for nonlinear function approximation.

Backgammon involves 30 pieces and a multitude of possible board

configurations, creating a huge game tree that traditional heuristic search

methods struggle to traverse effectively. TD-Gammon tackled this by

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

estimating the value of states (positions) directly and used rewards to

reinforce win conditions. It started with minimal backgammon knowledge

and improved through extensive self-play, ultimately approaching the skill

level of top human players. Later versions incorporated specialized features

and multi-ply search enhancements, marking significant advancements in

RL methods for complex games.

11.2 Samuel's Checkers Player

As a historical precursor to TD-Gammon, Arthur Samuel's checkers player

 exemplified early RL applications. Samuel's work involved heuristic

searches and temporal-difference learning, leveraging knowledge about

game strategies while training a program that could play checkers. He

introduced techniques such as rote learning and learned policies that

enhanced game performance through self-play, though his systems

occasionally suffered from issues like local minima.

Samuel's innovative use of a scoring polynomial guided the evaluation of

game states, shaping the learning of effective play strategies. His approach

established some foundational concepts in RL, like treating entire game

states as learning entities. Despite some limitations, his work laid essential

groundwork for future RL explorations in game playing.

11.3 The Acrobot

The Acrobot project tackled physical control tasks through RL by

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

 simulating a two-link, under-actuated robot resembling a gymnast. The goal

was to swing the robot's tip above a point efficiently. The problem was

framed as an online, model-free learning task where torques applied at

various joints influenced the system state.

�U�s�i�n�g� �S�a�r�s�a�(�»�)� �c�o�m�b�i�n�e�d� �w�i�t�h� �l�i�n�e�a�r� �f�u�n�c�t�i�o�n� �a�p�p�r�o�x�i�m�a�t�i�o�n�,� �d�i�f�f�e�r�e�n�t

actions resulted in varying outcomes that enhanced learning efficiency. The

representation of state relied on joint angles and velocities, and through

extensive trial and error, the acrobot learned an effective swinging strategy

over time. This application demonstrates RL's power in continuous action

spaces, effectively solving complex robotic control tasks.

11.4 Elevator Dispatching

Waiting for elevators is a common experience shaped by dispatching

strategies that enhance efficiency. Crites and Barto applied RL to a

four-elevator, ten-floor simulation, revealing the complexity of optimizing

elevator movements while considering passenger requests. Traditional

dynamic programming methods proved infeasible due to the substantial state

space involved.

By treating elevator dispatching as a semi-Markov decision process, Crites

and Barto implemented a Q-learning approach that optimized the average

squared waiting time through independent decision-making by each elevator.

Their methodologies effectively improved the dispatching strategy,

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

demonstrating RL’s applicability in real-world logistical scenarios.

11.5 Dynamic Channel Allocation

Singh and Bertsekas investigated dynamic channel allocation in cellular

 networks, focusing on minimizing call blocking while maximizing usage of

available channels. This problem emerges from the conflicts between the

thousands of calls and available bandwidth in a mobile system, demanding

efficient solutions to improve overall service reliability.

By framing the problem as a semi-Markov decision process, they employed

a reinforcement learning framework to manage decisions regarding channel

assignments adaptively while considering dynamic user patterns. Their

results demonstrated the effectiveness of RL approaches in managing

complex resource allocation problems in communications.

11.6 Job-Shop Scheduling

The final case study examined job-shop scheduling, a complex problem in

 which tasks must be optimally planned under strict temporal and resource

constraints. Zhang and Dietterich applied RL to the NASA space-shuttle

payload processing problem, seeking to learn scheduling policies that could

efficiently resolve intricate scheduling conflicts.

The use of iterative repair methods alongside various operators to modify

schedules enabled their system to learn from experience and progressively

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

develop effective scheduling policies. By treating schedules as actions and

episodes, their work illustrated how RL could not only create good

schedules but also reduce the need for extensive domain-specific manual

engineering.

Overall, these case studies showcase the remarkable progress in

reinforcement learning applications across various domains, reflecting both

the current capabilities and future possibilities for this transformative

approach to machine learning.

https://ohjcz-alternate.app.link/zWumPVSnuOb

https://ohjcz-alternate.app.link/zWumPVSnuOb

