Righting Software PDF (Limited Copy)
Juval Lowy

RIGHTING
SOFTWARE

A Method for System and Project Design

A

More Free Book @

https://ohjcz-alternate.app.link/zWumPVSnuOb

Righting Software Summary
"Mastering Software Design for Predictable Success."
Written by Booksl

More Free Book %‘\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the book

Embarking on the journey to software development mastery? Dive into
"Righting Software" by Juval Lowy, where the intricate art and science of
digital craftsmanship unfold into a symphony of innovation and precision.
This seminal work doesn't just offer atoolkit of techniques and best
practices; it reshapes your mindset, revealing the profound importance of
integrating design-first principlesinto every single line of code. More than
just atechnical manual, it champions a new paradigm of development,
where the balance between intuition and methodology is key to unlocking
unprecedented potential. Whether you're a seasoned devel oper or an
enthusiastic novice, Lowy's insights will arm you with the wisdom to
navigate the complex software landscape with confidence and foresight,
ensuring that every software you build is not just functional, but exceptional.

Are you ready to transform your approach and right

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

About the author

Juval Lowy is an esteemed software architect and author known for his
profound expertise and pioneering contributions to the field of software
engineering. Often hailed as a visionary in the software community, Lowy
brings over three decades of experience to his craft, mentoring companies
and developers worldwide in achieving robust, efficient, and scalable
solutions. Asthe founder of 1Design, arenowned consulting firm focused on
software design and architecture, he has been pivotal in introducing modern
methodol ogies and frameworks that have revolutionized how enterprises
approach complex software projects. Lowy is also highly regarded for his
engaging lectures and workshops, where he passionately shares hisinsights,
making complex subjects accessible through clear guidance and practical,
real-world applications. An articulate author, Guval L6wy's writings, such as
"Righting Software," embody his rich experience and strategic foresight,
offering invaluable guidance to individuals and organizations striving for

excellence in software devel opment.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

N 4 th(

'
Try Bookey App to read 1000+
summary of world best books
Unlock Titles, Topics
New titles added every week

Brand %— Leadership & Collaboration @ Time Management (=) Relationship & Communication
ness Strategy @ Creativity Public Money & Investing @ Know Yourself {’_’P Positive F
? Entrepreneurship World History C\Q Parent-Child Communication @ Self-care é.i.:\ Mind & Spi

Insights of world best books

THINKING, ATOMIC HABITS
FAST AND SLOW Mastering the art of power, to

have the strength to confront
complicated situations

—

M

HOW TO TALK
TO ANYONE D:,::I).Du

Chiv

N'

&

pn
-

Free Trial with Bookey:

https://ohjcz-alternate.app.link/zWumPVSnuOb

Summary Content List

chapter 1.
chapter 2
chapter 3:
chapter 4:
chapter 5:
chapter 6:
chapter 7:
chapter 8:
chapter 9:
chapter 10:
chapter 11:
chapter 12:
chapter 13:
chapter 14:
chapter 15:

chapter 16:

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 17:
chapter 18:
chapter 19:
chapter 20:
chapter 21.
chapter 22:

chapter 23:

More Free Book %\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 1 Summary:

##H# Summary of Chapters 1-3

#H## Chapter 1. The Method

The journey from beginner to master architect is marked by the evolution
from navigating a sea of design options to focusing on a select few optimal
solutions. Novices are often overwhelmed by the multitude of patterns,
methodologies, and ideas available in the software architecture industry.
However, seasoned architects understand that only a small subset of these
options are effective. Therefore, it is advisable to concentrate on these
tried-and-true methods rather than getting lost in the plethora of choices.
This philosophy is rooted in the Zen of Architects, emphasizing simplicity
through mastery.

#it# Chapter 2: Decomposition

Software architecture is the strategic design and structure of a system,
crucia for its sustainability and functionality. Although designing the
system is comparatively quick and inexpensive, a flawed architecture proves
costly to maintain or expand post-construction. The core of a system's

architecture liesin decomposing it into its foundational components and

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

understanding their interactions. This process, known as system
decomposition, is akin to segmenting a car or a house into its respective
parts and ensuring harmonious interaction during operation. Effective
decomposition sets the groundwork for arobust architecture by identifying

and organizing key components.
#i#Ht Chapter 3. Structure

Building upon decomposition, this chapter introduces " The Method," which
offers a structured template for managing common areas of volatility
inherent in software systems. These areas of volatility, which are consistent
across various systems, dictate typical interactions and constraints. By
adopting The Method, architects can efficiently create accurate system
structures, focused on guidelines for interactions and operational patterns.
Similar to how vastly different organisms like mice and elephants share
architectural similarities, The Method provides a universal framework while

allowing customization for detailed design.

A key emphasis of The Method is on clearly defining and classifying
components and relationships within a system, which aids both the design
process and communication among developers. The chapter also underscores
the importance of understanding project requirements through use cases,
which describe system behavior, rather than mere functionality. Use cases

can be captured textually or graphically, but graphical representations, such

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

as activity diagrams, are preferred due to their clarity and capacity to
illustrate complex time-based interactions like parallel execution and nested

conditions.
#H#H Use Cases and Requirements

Requirements should focus on the behavior of the system rather than its
functionalities. This shift from "what" to "how" addresses potential
misinterpretations between clients, marketing teams, and developers,
reducing costly revisions post-deployment. Use cases, describing sequences
of activities, offer acomprehensive view of how the system operates and
interacts with users or other systems. Graphical depiction through activity
diagrams is advocated, as these capture temporal aspects more effectively

than text or flowcharts.
#i#Ht Layered Approach

The Method recommends a layered architecture, emphasizing encapsul ation
across layers. Layers serve to encapsulate their own volatilities and those of
other layers, enhancing robustness. The system typically includes a
structured layering approach, encouraging the use of servicesto cross layers.
Services not only offer scalability and security but also improve throughput,
availability, and system resilience. This structured architecture facilitates

communication and coordination within the system, aligning with some

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

classic software engineering practices while introducing new dimensions

driven by volatility management.

More Free Book %\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 2 Summary:

The chapter outlines the architectural design principles of a software system
using alayered approach, referred to as " The Method." The purposeisto
achieve modularity, reusability, maintainability, and scalability by
structuring the system into distinct layers, each with clearly defined

responsibilities,

Client Layer: Also known asthe presentation layer, thistier isthe
interface through which different clients, such as desktop applications,
mobile apps, web portals, or even other systems, interact with the software.
It emphasizes treating al clients equally, ensuring they access the system
through consistent entry points, which improves design quality, promotes
reusability, and facilitates maintenance. As technology evolves, thislayer
can adapt to changes without affecting the core business logic by

encapsulating the inherent volatility of client interactions.

Business Logic Layer: Thislayer captures the variability in the system's
operational processes by implementing behavior in terms of use cases. The
chapter introduces "Managers' and "Engines' to handle these fluctuations:
Managers encapsul ate the variations in busi ness workflow sequences, while
Engines focus on the dynamism of individual activities. For example, within
a stock trading system, different Managers might handle analysis and trading

workflows, with Engines providing reusable components for tasks like data

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

transformation.

Resour ce Access L ayer : Responsible for mediating between the business
logic and the physical resources, this layer encapsulates the volatility of
accessing underlying resources like databases or file systems. The layer
shouldn't expose internal details through operations like CRUD functions
but instead abstracts access with stable, business-oriented operations termed
"atomic business verbs." This ensures that changes in resource technology
affect only the internal mechanisms, not the interface with other system

components.

Resource Layer: The foundational tier contains the actual resources
critical to the system's operations, from databases and message queues to

file systems. These resources can be internal or external to the system.

Utilities: Represent common infrastructure services crucial across the
system, including logging, security, and event management. These utility

services operate under different rules compared to other components.

Classification Guidelines: The chapter provides guidelines to avoid poor
design practices, such as functional decomposition, and to initiate and
validate design processes effectively. Naming conventions are emphasi zed
for clarity, suggesting two-part compound names in Pascal case with specific

prefixes based on the service type, enhancing communication within the

Dlgrid

=
More Free Book R
Cf 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

architecture. The design principles correlate the layers to basic questions like
"who," "what," "how," and "where," helping in the design inception and
validation by ensuring purpose-specific encapsulation and avoiding

cross-layer contamination.

Manager to Engine Ratio: Observations suggest that the number of
Engines tends to be fewer than initially expected due to the relative rarity of
operational volatilities needing encapsulation. There's an observed tendency
towards a "golden ratio" between Managers and Engines. A straightforward
system might have no Engines for a solo Manager and generally features one
Engine for every two or three Managers, maintaining a balance that reflects

the complexity and variability within the system's use cases.

Together, these layers and guidelines form a cohesive system architecture
aimed at reducing complexity, enhancing flexibility, and ensuring that the

software remains robust and adaptable to future changes.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: The Method achieves modularity

Critical Interpretation: Embracing 'The Method' could be aturning
point in structuring the different aspects of your life, helping you
achieve amore organized and balanced existence. By
compartmentalizing life's complexities into distinct layers, such as
personal goals, professional pursuits, relationships, and
self-improvement, you ensure that each layer has clearly defined
responsibilities. Like a well-architected software system, this method
grants you flexibility, allowing you to adapt each aspect independently
while maintaining overall stability. As challenges and opportunities
arise, treating all dimensions of life with consistency ensures that your
core values and ambitions remain untouched by external shifts. This
disciplined approach fosters resilience, promotes personal growth, and

aligns future endeavors with your evolving aspirations.

More Free Book %‘\ R
Scan to ov.vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 3 Summary:

The text delvesinto principles of software architecture and design, focusing
on a structured approach to developing well-crafted, flexible, and
maintainable systems. Key concepts highlighted include Managers, Engines,
and ResourceA ccess services, which collectively form the framework for a

coherent architectural strategy.
Concept of Manager s, Engines, and Resour ceAccess.

The text emphasizes that having alarge number of Managers indicates
functional or domain decomposition, acommon design flaw. |deally, a
Manager supports multiple use case families, often through different service
contracts, reducing the overall count and promoting better system design.
Managers are upper-layer components that change with different use cases,
while Engines and ResourceA ccess components are more stable, reflecting
their deeper alignment with fundamental system operations. This structure
ensures top-down volatility minimization, where the most change-prone

elements are at the top, and stable, reusable components reside further down.
Volatility and Reuse:

The system's volatility hierarchy suggests a top-down approach, with client

components being the most changeable. Such volatility patterns necessitate a

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

resilient architectural design, where reliance on stable, lower-layer
components prevents systemic collapse during changes. Conversely, a
well-architected system boosts component reuse as one moves down the
layers, with ResourceA ccess components being the most reusable. This
maximization of reuse supports economic system scalability and flexibility

to extend functionalities without extensive rewrites.
Design Patterns and Extensibility:

Effective design adopts principles like incremental construction and
extensibility. These advocate gradually assembling or extending systemsin
manageabl e sections, rather than iterative reconstruction, reminiscent of
building a house floor-by-floor or a car in parts rather than evolving a base
model. This strategy aligns with economic and temporal constraints while
fostering early feedback through staged deliveries. It further underscores the
importance of system extensibility, achieved by designing for future

adaptability rather than retrofitting existing components.

Micr oser vices Per spective:

Microservices, often misunderstood as digointed entities referred to by size,
are essentially services. The text criticizes the industry's shift towards

microservices, stressing the original goal of service-orientation islost amidst

functional decomposition practices, endangering maintainability and

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

extensibility. Efficient microservice applications require each subsystem
component, including Managers, Engines, and ResourceA ccess elements, to

serve as independent services.
Communication Protocols:

Communication between services, especially in microservices, must balance
internal efficiency with external reliability. The text cautions against the
indiscriminate use of HTTP for internal communications—a practice that
introduces inefficiencies and errors—advocating instead for fast, dedicated
protocols like TCP/IP for intra-system interactions, ensuring robust and
performant systems akin to how the human body uses specific internal

communication methods.
Open vs. Closed Architectures:

The discussion contrasts open and closed architectures. While open
architectures allow unrestricted component interactions across layers, they
can lead to coupling and loss of encapsulation, diminishing system
robustness. Closed architectures restrict these interactions, preserving

encapsulation and stability by containing volatility within design boundaries.

In summary, the text underscores the importance of awell-structured,

volatility-aware system design that prioritizes stable and reusable

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

architecture, advocates incremental development, supports extensibility, and

efficiently employs service-orientation principles.

More Free Book %\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Volatility and Reuse

Critical Interpretation: In your life and projects, understanding and
managing volatility is key to achieving lasting success. Embrace a
top-down approach, recognizing that certain elements or tasks may be
more susceptible to change compared to others. Position these volatile
components at the forefront, where they can be more easily adjusted,
while basing your operations on deeply stable and reliable principles
or tools below them. This approach both optimizes your efforts and
allows you to build on a solid foundation, much like how a
well-architected software system ensures resiliency during transitions.
By doing so, you not only bolster efficiency and consistency in your
endeavors but aso cultivate an environment ripe for reuse, where
previously acquired knowledge and stable skills contribute to future
growth and adaptability.

More Free Book %‘\ R
Scan to ov.vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 4:

Thistext provides a detailed exploration of different software architecture
styles, focusing on how they manage the trade-off between encapsulation
and flexibility. Let’s break it down into understandable segments for better

clarity:
Open vs. Closed Architecture
Open Architecture

- In open architectures, the encapsulation benefits of layered designs are
largely lost because components can freely communicate up, down, or
sideways between layers. This flexibility leads to higher layer coupling,
diminishing the independence of layers and potentially importing volatility

from higher to lower layers.
Closed Architecture

- Closed architecture emphasi zes encapsul ating operations within layers.
Components can only call components in the adjacent lower layer,
promoting decoupling. This architecture trades some flexibility for
heightened encapsulation and is often preferred for its stability. However, it

can become complex due to strict adherence to layering.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

#H Semi-Closed/Semi-Open Architecture

- This approach allows for calling down multiple layers, seeking a balance
between encapsulation and performance. While it hampers flexibility less
than afully closed system, it does sacrifice some encapsulation. It is most
justified when high performance is critical or when the codebase rarely
changes, such as networking protocols like the OSI model adapted for TCP

stacks.

#H## Managing Complexity

Relaxing Rules Within a Closed Ar chitecture

- While closed systems limit flexibility, strategic relaxation of strict layer
adherence can reduce complexity. For example, creating a utilities layer
outside the typical hierarchy allows all components to access necessary
services like logging and diagnostics.

Guidelines and Pitfalls

1. Clientsand Managers.

- Clients should avoid calling multiple Managers in asingle use case to

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

maintain decoupling. If necessary, sequence different managers across use
cases instead.

- Managers can queue interactions with other Managers, a method that
technically adheresto a downward call path through queuing mechanisms,

maintaining closure principles while enabling interaction.

2. Function Separation:

- Avoid direct connections such as Engines calling one another or
ResourceA ccess calling other ResourceA ccess, as these introduce

unnecessary complexity and violate architecture principles.

3. Event Publishing:

- Only components like Managers should publish events, given their
understanding of system state. Clients, Engines, and ResourceA ccess should
not handle these responsibilities to maintain afunctional separation of

concerns.

4. Symmetry in Architectural Design:

- Enforcing symmetry in architecture ensures balanced and predictable

component interactions. Asymmetry, such as amissing event in a pattern or

unexpected direct calls, often indicates a deeper design flaw or oversight.

Dlgrid

=
More Free Book R
Ot 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

Addressing Component Interactions

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey x‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

People fave bpag [=F?
N Crazy

=t
o ALRTA Y a&_{_
\“:.:-\-:m L O QAN

)
We
ok

Oe

Why Bookey is must have App
for Book Lovers

30min Content

@ The deeper and clearer interpretation we provide, the better
grasp of each title you have.

E Text and Audio format

Absorb knowledge even in fragmented time.

—v Quiz
Check whether you have mastered what you just learned.

A® And more
oo Multiple Voices & fonts, Mind Map, Quotes, IdeaClips...

\ L
Free Trial with Bookey~

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 5 Summary:

Chapter 5 of the book delves into the practical application of system design
principles through a comprehensive case study. The chapter showcases the
development of a new system called TradeMe, designed as a modern
replacement for an inefficient legacy system. TradeMe functions as a
platform to match tradesmen—such as plumbers, electricians, and
carpenters—with contractors and projects. The case study explores the entire
design process, from understanding client needs to architectural decisions,
demonstrating how theoretical concepts are implemented in real-world

scenarios.

TradeM e System Overview

TradeMe serves as a dynamic marketplace for tradesmen and contractors,
optimizing the way independent tradesmen find work and how contractors
source skilled labor. The system considers various compensatory factors,
including discipline-specific pay rates, skill levels, project types, and market
dynamics influenced by supply and demand. Furthermore, TradeMe handles

regulatory compliance issues, risk assessments, and reporting requirements.

The platform facilitates contractors in listing projects, specifying required

skills, and determining pay rates based on current market conditions.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Tradesmen, in turn, can list their skills, availability, and expected rates. The
system processes these dynamics to dispatch tradesmen to work sites
effectively while maintaining exclusivity agreements that prevent
contractors from bypassing the system. TradeM e generates revenue through
transaction spreads and annual membership fees from both tradesmen and

contractors, termed collectively as members.

Currently, regional call centers handle assignments, where account
representatives use their expertise to schedule tradesmen. However, the
legacy system, primarily used in European call centers, is outdated. It
requires significant manual intervention with multiple disconnected
applications, lacking integration and modern user experience, and suffers

from security vulnerabilities.

L egacy System Challenges

The legacy system's convoluted design and lack of cybersecurity measures
led to inefficient operations. It relies on a desktop application tightly coupled
with businesslogic, resulting in poor separation of concerns that hinders
updates and flexibility. Moreover, the system's rigid and local e-specific
design struggles with compliance to new legidation, forcing a compromise
to the lowest common denominator across regions and burdening users with

manual workflows,

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Designing the New System

Given these inefficiencies, the company desires to design a robust new
system. The management's goal is to automate as much of the workflow as
possible and rely minimally on call centers, which are envisioned merely as
backup facilities. The new system must support modern features like mobile
access, workflow automation, cloud migration, and fraud detection. It is
paramount for it to provide seamless integration across various markets

including potential expansions outside the European Union.

Despite having ample financial resources due to the legacy system's
profitability, past attempts by the company to build a replacement system
failed due to underestimating the complexities of developing quality
software. Now, acknowledging past failures, the company is committed to
applying sound software development practices to ensure the success of the

new TradeMe system.

Use Cases and Challenges

As the design process unfolds, the absence of comprehensive requirements

from the old system means the design team must infer core use cases by

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

examining what the legacy system currently performs. Important use cases
include adding tradesmen or contractors, enabling requests for services, and

matching and assigning tradesmen to projects.

The chapter emphasizes that a perfect set of use casesisrare, and system
architects often need to design flexibly to accommodate undefined
requirements. The TradeMe example is designed to teach critical thinking
and problem-solving skills, focusing on the rationale behind design

decisions and encouraging architects to tailor designs to specific situations.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 6 Summary:

Summary:

The chapter begins by scrutinizing various use cases depicted in TradeMe's
system diagrams, emphasizing that most of the depicted functionalities, such
as adding tradesmen or creating projects, are not core to the system's
business essence. The fundamental purpose of TradeMe isto match
tradesmen to contractors and projects, adequately captured only by the
"Match Tradesman" use case. Even though design validation should
prioritize core use cases, it's crucial to demonstrate system versatility by
easily supporting other functionalities, thus aligning with unforeseen

business needs.

The chapter outlines the necessity of transforming client requirements into a
design-friendly format, recognizing roles and interactions that naturally map
into system layers. It introduces "swim lanes," avisual tool in activity
diagramsto clarify control flows between different system roles, such as
administrators and users, as demonstrated in alternative visualizations like

the Terminate Tradesman use case.

The narrative advances into "The Anti-Design Effort," atechnique

showcasing the pitfalls of poor design practices, like functional

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

decomposition. Examples include the "Monolith," a centralized,
tightly-coupled structure, and the "Granular Building Blocks, where
excessive components encapsul ate no complexity, leaving clients to manage
business logic. Alternatives such as service chaining or domain
decomposition also lead to problems like increased complexity and

ambiguity in task responsibilities.

It underscores the vital alignment of architecture with business objectives,
ensuring bi-directional traceability from objectives to design and vice versa.
For instance, if extensibility is a business objective, architecture integrating
over a message bus becomes a fitting solution. Conversely, emphasizing
performance could conflict with the complexity introduced by such

architecture.

The chapter concludes by stressing the importance of establishing a unified
system vision among stakeholders. Misalignment or the lack of a coherent
vision within organizations often leads to systemic inefficiencies. The new
TradeMe system aimsto holistically tackle these issues, driven by a shared
vision that justifies every architectural and strategic decision. In sum, the
chapter underscores the transformative process of aligning a software
system's architecture with business goals, ensuring it not only meets current

needs but can evolve with future market dynamics.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Align software architecture with business objectives
Critical Interpretation: By ensuring your software architectureisin
sync with your organization’s core business goals, you're crafting a
foundation that doesn't just support but propels your company's
mission forward. This alignment is the guiding star that enables a
system to adapt, evolve, and face the unpredictability of future market
demands with grace and readiness. Imagine this as the true north that
streamlines and harmonizes every decision—inspiring to turn
seemingly isolated software choices into a unified effort contributing
to larger organizational aspirations. In your life, embracing this
concept can transform your approach to challenges; by consistently
aligning your actions with personal goals, you become adept at
navigating life's uncertainties, prepared not just to respond to change

but to seize every opportunity it presents.

More Free Book %‘\ R
Scan to ov.vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 7 Summary:

The chapter outlines an effective strategy for designing systems, using the
development of the TradeMe platform as a case study. The process begins
with defining a clear and concise vision, which acts as a guiding star for al
subsequent decisions. Thisvision helps deflect irrelevant demands that don’t
align with the primary goal. For TradeMe, the vision was succinctly
described as creating a platform to build applications that support the
TradeM e marketplace, emphasizing a platform that encourages diversity and

extensibility.

Once the vision is established, detailed business objectives are set. These
objectives derive from the vision and focus on solving the primary business
challenges. In the TradeMe case, objectivesincluded unifying repositories
and applications, enabling fast turnaround for new reguirements, supporting
customization across markets, ensuring business visibility, staying
forward-looking with technol ogies and regulations, integrating well with
external systems, and streamlining security protocols. Notably, controlling
development costs was not a primary concern, as addressing the business

pain points was deemed more critical.

Alongside vision and objectives, a mission statement is articulated to bridge
the gap between what the business aims to achieve and how it plans to

accomplish it. TradeMe's mission was to design and build software

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

components that could be assembled into applications as needed, promoting

amodular approach to system devel opment.

A significant part of system architecture involves creating a shared glossary
of domain-specific terminology to prevent misunderstandings between
different departments. For TradeMe, thisinvolved clearly defining ‘who,’
‘what,” ‘how,” and ‘where’ related to the system, such as identifying key
stakeholders like tradesmen and contractors and defining functionalities like

membership and marketplace.

|dentifying areas of volatility—parts of the system most likely to change—is
crucial for designing aflexible architecture. For TradeMe, volatilities
included client applications requiring adaptability to different environments
and user needs, managing membership changes, fee schedules, project
requirements, and handling disputes. Further, volatilities were identified in
matching tradesmen with projects, compliance with regulations, localization

challenges, resource access, deployment models, and security protocols.
The system architecture also considered weaker volatilities like notification
systems and project analysis, recognizing that while they might become
significant under certain circumstances, they didn't meet the immediate

strategic needs of TradeMe.

Overall, the chapter emphasi zes the importance of aligning system

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

architecture with business goal's through a clear vision, specific objectives,
and a practical mission statement. By doing so, teams can design systems
that are not only robust and efficient but also flexible enough to adapt to

future changes and challenges.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Defining a Clear Vision

Critical Interpretation: Imagine setting an unwavering anchor point in
your personal or professional life, aguiding beacon that cuts through
the noise of distractions and unrelated demands. By articulating a
distinct vision for your goals, you set forth a path that consistently
aligns your steps with your core aspirations. Much like TradeMe's
succinct vision that centered on fostering a diverse and extensible
platform, your life's vision keeps you from veering off course. It
inspires unwavering focus, making sure every decision serves your
overarching purpose, silencing doubts and pitfalls, and affording you
clarity in complexity. This powerful practice not only energizes your
endeavors but aso reinforces your commitment to crafting alife that

resonates with your true objectives.

More Free Book %‘\ R
Scan to ov.vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 8:

Chapter Summary: TradeMe Architecture Overview

The TradeMe architecture features a multi-tier design, with a clear
separation between the client and business logic tiers, aswell as areliance
on amessage bus for system communication. The client tier facilitates
interactions for various user groups, such as tradesmen, contractors, and
educational institutions, through dedicated portals. It also includes external
processes like schedulers that initiate certain behaviors. In contrast, the
businesslogic tier houses several managers, each responsible for different
system functions: the MembershipManager oversees membership-related
tasks, the MarketM anager handles marketplace activities, and the

EducationManager is responsible for continued education use cases.

A significant aspect of the architecture is the use of two engines, namely the
Regulation Engine and the Search Engine, which manage volatility
stemming from changing regul ations and marketplace matching processes,
respectively. ResourceAccess components manage storage needs for entities
like payments and members, while utilities such as Security, MessageBus,

and L ogging support system operations.

The message bus emerges as a central communication facilitator, ensuring

Dlgrid

=
More Free Book R
Ot 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

asynchronous and robust communication between system components. A
message bus architecture allows for queued, multi-point communication,

mai ntaining message delivery even under connectivity disruptions.

However, configuring a message bus with the right features and technologies

Iscrucial, as it impacts system implementation ease and robustness,

TradeMe employs two notable design patterns, the "Message Is the
Application" and workflow management, to bolster extensibility and
decoupling. In this system, the message bus decouples clients and managers,
fostering independence and evolution without direct interaction. Services
post to and receive messages from the bus, maintaining an extensible
architecture where system behavior is shaped by the aggregation of service
transformations. This methodology aligns with the future-oriented actor
model, which leverages simple service interactions for complex system

behaviors.

Workflow managers guide TradeMe's high-volatility business processes,
allowing for feature adjustments via workflow changes rather than code
modifications. This setup enables swift development cycles and
customization, essential for meeting business needs in diverse markets. By
supporting long-running workflows without session dependencies, the

architecture accommodates client interactions across devices.

While the trade-offs for using such intricate patterns and a message bus

Dlgrid

=
More Free Book R
Cf 2

Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

include complexity and a steep learning curve, the benefits in terms of
scalability, customization, and future readiness often outweigh the

challenges for an organization equipped to handle the demands of a dynamic

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey k‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

tes after each book summary
erstanding but also make the
and engaging. Bookey has
ling for me.

Love it!

ling habit
)'s design
1al growth

'z « 3
:; ‘:
’ \
Y/ App Store \V/

' Editors’ Choice ‘:."

Positive feedback

Fantastic!!! Fi
I'm amazed by the variety of books and languages Al
Bookey supports. It's not just an app, it's a gateway bc
to global knowledge. Plus, earning points for charity to
is a big plus! m

Bookey offers me time to go through the
important parts of a book. It also gives me enough
idea whether or not I should purchase the whole

book version or not! It is easy to use!

Awesome app!

I love audiobooks but don't always have time to listen
to the entire book! bookey allows me to get a summary
of the highlights of the book I'm interested in!!! What a
great concept !!'highly recommended!

Time saver!

Bookey is my go-to app for
summaries are concise, in¢
curated. It's like having acc
right at my fingertips!

Beautiful App

\ L
Free Trial with Bookey~

This app is a lifesaver for book lovers witk
busy schedules. The summaries are spot
on, and the mind maps help reinforce wh
I've learned. Highly recommend!

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 9 Summary:

The chapter centers around the critical task of selecting and validating
workflow tools within an architectural framework, using afictional system
called TradeMe as a case study. The narrative begins with a discussion of
workflow tool selection, emphasizing that while the choice is not tightly
bound to system architecture, it is crucial for ensuring system functionality.
The chosen tool should support visual workflow editing, handle workflow
persistence and rehydrating, integrate seamlessly with various protocols,
manage nested workflows, create reusable workflow libraries, define
workflow templates, and allow for comprehensive debugging. Advanced
features such as workflow playback, profiling, and diagnostic integration are
also highlighted as desirable.

The text then delves into design validation, underlining the importance of
verifying, before implementation, that a design can support required
functionalities. Validation involves demonstrating that the architecture can
handle core use cases, which encapsulate volatile components within
services. Thisis achieved by detailing the call chain or sequence diagrams
for each use case. If these diagrams reveal shortcomings or ambiguous
validations, revisiting the design is necessary. The chapter exemplifiesthis
process through the TradeM e architecture, showcasing its modular,
decoupled structure that easily validated core use cases, including the key

"Match Tradesman" scenario.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

The chapter further explores specific use cases within the TradeMe system.
The "Add Tradesman/Contractor” use case involves interactions between
client applications and a membership subsystem. It starts with a request
posted via a client application, which is managed by the Membership
Manager. This manager utilizes workflow storage to execute or rehydrate
workflows, subsequently communicating workflow states through a message
bus. Regulatory compliance checks and member updates are managed viaan

integrated Regulation Engine and feedback 1oops through the message bus.

In the "Request Tradesman" use casg, initiated by either a contractor's portal
or an internal marketplace app, the essential roles of contractor and market
elements are highlighted. Once arequest is verified, it leads to the activation
of the "Match Tradesman" use case. The process entails the Market Manager
engaging relevant workflows, consulting regulations, and updating project

requests, all orchestrated through a dynamic message bus system.

The "Match Tradesman" use case focuses on identifying and assigning
contractors to meet demand. The trigger can be client requests or automated
processes. Key elements include managing market regulations, searching
components, and validating membership details. The workflow system is
designed to easily integrate with subsystem designs, ensuring streamlined

and efficient operation throughout the TradeMe architecture.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Overadll, the chapter provides a comprehensive guide on selecting and
validating workflow tools within an architecture, with TradeMe serving as a
detailed case study to illustrate the practical implementation and validation

of complex use cases.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 10 Summary:

The passage outlines a robust and adaptable system design for managing
multiple use cases related to tradesmen in a project environment. It details

various call chains and workflows that effectively utilize a composable

design pattern, allowing the system to easily extend and adapt to new

scenarios.

In the Match Tradesman use case(illustrated in Figure 5-23), the design
involves loading and executing workflows to successfully assign the right
tradesman to a project. A pivotal aspect of this design isits composability,
allowing for the integration of different analytical engines, like an Analysis
Engine, to address specialized needs such as dealing with market volatility.
This modularity supports extensive business intelligence inquiries,
exemplified by the ability to analyze projects from a multi-year span without

atering the foundational component design.

The Assign Tradesman use case(shown in Figures 5-24, 5-25, and 5-26)
covers crucia areas—client, membership, regulations, and market—and can
be initiated by various actors, such asinternal users or subsystem requests
viathe Message Bus. This use case highlights the interaction between the
Membership and Market Managers, which collaborate within their distinct
subsystems. Such collaboration demonstrates the efficacy of the "Message Is

the Application" pattern, where triggering messages between services

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

facilitates dynamic system behaviors, like real-time client notifications.

The Terminate Tradesman use casebuilds on established patterns

(Figures 5-27 and 5-28), showing how the Market Manager initiates the
termination sequence. The use case adapts to different initiators, whether it's
project completion or tradesman-triggered requests, thus exhibiting the
design's adaptability. Errors or deviations are signified by alternate pathsin

the diagrams, ensuring robust error handling and user communication.

Lastly, the Pay Tradesman use case(Figure 5-6 and 5-29) inherits the
established interaction patterns, demonstrating a high degree of symmetry
with earlier use cases. This consistency across use cases ensures ease of

management and predictability within the system.

In summary, the series of use cases and corresponding diagrams underscore
a system architecture that is both flexible and scalable, designed to handle a
variety of complex transactional requirements within a tradesman-centric

project management context.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: The Importance of Composability in System Design
Critical Interpretation: When you embrace composability in your
projects, just like the adaptable system outlined in chapter 10 of
'Righting Software', you open your life to aworld of flexibility and
innovation. This key point from the chapter suggests that by
integrating modular components that can seamlessly work together,
you empower yourself to handle unexpected scenarios and evolving
needs with ease. Much as the system can address market volatility or a
multi-year project analysis without reworking its distinguished core,
your life becomes more manageable and less stressful when each
component operates harmoniously, allowing quick adaptation to new
challenges, fostering growth, and ensuring resilience in the face of

change.

More Free Book %‘\ R
Scan to ov.vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 11 Summary:

Summary of Chapters. System and Project Design in Softwar e Engineering

In Chapter 5, we delve into the system design phase of a case study about
the fictional TradeMe system, focusing on the 'Pay Tradesman,' 'Create
Project,' and 'Close Project’ use cases. Each of these use cases represents a

distinct workflow within the system:

1. Pay Tradesman Use Case: This processis initiated by an external
scheduler, independent of the system's internal workings. The scheduler
simply sends a message via a bus, which then prompts the "PaymentAccess’
component to execute the actual payment by updating the "Payments’ store

and interacting with an external payment service.

2. Create Project Use Case: Here, the 'MarketManager™ handles project
creation, following a dynamic workflow executing multiple steps or
permutations as necessary. This flexibility is ahallmark of the workflow
manager pattern used, ensuring adaptability despite potential errors or

complex steps.

3. Close Project Use Case: Thisinvolves collaboration between the

"MarketManager” and "Membership Manager”, reflecting a similar

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

workflow pattern to previous processes, ensuring integrated interaction to

complete project closure.

As Part 1 concludes, the focus shifts from system design to the essential
subsequent phase: project design. While system design outlines the
architecture's technical blueprints, project design involves devising
execution strategies, scheduling, and resource management to transform

these blueprintsinto reality.

Transition to Part 2. Project Design

Chapter 6 introduces the concept of project design, which iscritical for the
successful execution of any software project. Compared to system design,

project design examines the practical implementation, identifying effective
scheduling, cost management, and risk mitigation strategies. It emphasizes
the necessity of presenting management with several viable design options,

each reflecting different trade-offs among schedule, cost, and risk.

The chapter stresses the engineer'srole in project design, pointing out that
engineering inherently involves finding balanced solutions amid constraints,
much like system design pertains to architecture and project management to
programming. While a single project may offer myriad design options,

identifying and narrowing them to fit objectivesis crucial. Project design

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

also includes creating "assembly instructions," ensuring everyone involved
understands the implementation process clearly, akin to having a detailed

guide for assembling complex IKEA furniture.

Throughout Part 2, the book explores methodologies for handling project
constraints effectively, ensuring projects stay on time and within budget.
Thisinvolves viewing project design not as an adjunct to project
management but as an equivalent foundation vital to software development

SUCCESS.

The chapter closes by drawing on concepts like Maslow's Hierarchy of
Needsto illustrate the layered priorities within project management,
suggesting that addressing foundational needs—such as a clear design

plan—enabl es project teams to tackle higher-level objectives effectively.

Chapter Content Summary

Focuses on the TradeMe system's use cases: 'Pay
Tradesman,' 'Create Project," and 'Close Project.’

Pay Tradesman Use Case: Initiated by an external scheduler
via a bus, ‘PaymentAccess’ interacts with "Payments” store and

Chapter 5: external services.
System Design Create Project Use Case: Managed by "MarketManager
Phase utilizing a flexible workflow manager pattern to adapt to dynamic

processes and errors.

Close Project Use Case: Collaboration between
"MarketManager” and "Membership Manager' ensures integrated
project closure.

More Free Book

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

Chapter Content Summary

Transition to Part Shifts focus from system architecture to executing those

2: Project . . . :
Design designs with practical strategies.
Emphasizes scheduling, cost management, and risk
mitigation as key aspects of project design.
Chapter 6: Recognizes the engineer's role in balancing constraints akin

to architecture and programming in system design.

Highlights the importance of "assembly instructions” for
effective implementation.

Applies Maslow's Hierarchy of Needs to prioritize project
management objectives based on foundation stability.

Introduction to
Project Design

More Free Book

undefined

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 12

Chapter 6: Software Project Hierarchy of Needs

This chapter introduces a hierarchical framework for identifying and
addressing the needs essential for successful software project management.
Drawing a parallel to Maslow's hierarchy of needs, the chapter categorizes
project needs into five ascending levels: physical, safety, repeatability,

engineering, and technology.

1. Physical Needs: At the base are essential resources akin to basic
human survival. Projects require a workspace, resources like hardware and

personnel, and legal protections to ensure a foundation.

2. Safety Needs. Once physical aspects are secured, focus shiftsto
securing the project's financial and temporal resources. Projects must
balance risk adequately, maintaining a safe yet challenging environment

conducive to growth and innovation.

3. Repeatability: Building trust in project execution, thislevel involves
establishing processes that ensure quality and consistency. Projects must
manage requirements, track progress, and maintain quality through testing

and configuration management.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

4. Engineering: With repeatability, attention turns to intricate
engineering aspects like architecture and design. Quality assurance and
preventive measures are devel oped systemically, venturing into more

complex engineering domains.

5. Technology: At the pinnacle are technical tools and methodol ogies
that can thrive only when foundational needs are met. Technology supports

engineering and ultimately the entire project's objectives.

The chapter discusses acommon pitfall where projects mistakenly prioritize
technology at the expense of fundamental needs, leading to failure. It
underscores the significance of strategically meeting lower-level needsto

stabilize and support the higher echelons of the hierarchy.
#i# Chapter 7: Project Design Overview

This chapter provides an overview of crucial methodologiesin project
design. It emphasizes the importance of a detailed plan that includes staffing,
scope, effort estimation, and a comprehensive schedule. It explainsthat a
well-conceived design isintegral to successful software project delivery and
includes calculating costs and ensuring the plan's viability. The chapter
introduces key elements that will be further expanded in subsequent

chapters, but it provides a foundational understanding of effective project

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

design strategies.
#H# Chapter 8: Network and Float

Exploring project planning, this chapter delvesinto the critical path method,
acrucial technique for identifying project timelines and resource allocation.
This method is invaluable for complex projects, including software

development, and involves analyzing both critical and non-critical activities

to enhance project success.

The Network Diagram: The project is visualized as interconnected
activities, depicted in network diagrams that map out dependencies. The
chapter contrasts node and arrow diagram methods, examining their usage

and implications for representing project networks.

- Node Diagrams. Nodes represent activities linked by arrows as
dependencies, with the length of arrows irrelevant to time spent.

- Arrow Diagrams. Arrows depict activities, with nodes showing
dependencies and events. While initially challenging to interpret, they offer

a clearer representation once mastered.
Dummy Activities. These are zero-duration activities used in arrow

diagrams to express dependencies and avoid clutter, showcasing

dependencies explicitly.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

History of the Critical Path Method: Traced back to the mid-20th

century, its origins are linked to DuPont and the U.S. Navy's Polaris project.

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey k‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

Read, Share, Empower

Finish Your Reading Challenge, Donate Books to African Children.

The Concept

BOO
iy 9’

This book donation activity is rolling out together with Books For Africa.
We release this project because we share the same belief as BFA: For many
children in Africa, the gift of books truly is a gift of hope.

The Rule

Earn 100 points Redeem a book Donate to Africa

Your learning not only brings knowledge but also allows you to earn points for
charitable causes! For every 100 points you earn, a book will be donated to Africa.

A
Free Trial with Bookey~

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 13 Summary:

order to maintain a balance between cost and risk, it's crucial to use float
judicioudly. Let's delve deeper into the concepts of total float and free float,
and how they interplay with project management strategy.

Under standing Total Float and Free Float

Total float and free float are important concepts in project management that
aid in the scheduling and resource allocation of activities. Total float refers
to the amount of time an activity can be delayed without affecting the overall
project timeline. It's fundamentally tied to a sequence or chain of activities,
not just individual tasks. Free float, on the other hand, is the time an activity
can be delayed without impacting any subsequent activities, thereby
ensuring that downstream tasks proceed unaffected.

In network diagrams, total float is visualized as part of both critical and
non-critical paths. Critical paths are sequences of activities with zero float,
requiring meticulous management to prevent project delays. Non-critical
paths have activities with some total float, depicted with red lines at the end
of activity arrows in project visualizations. If an upstream non-critical
activity is delayed within itstotal float, it could potentially consume the float

of downstream tasks, increasing their criticality.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Visualizing and Calculating Floats

Visual representations, such as those using color-coding, greatly enhance the
understanding of float dynamics within project networks. Red, yellow, and
green color codes are often employed to denote activities with varying levels
of float: low, medium, and high respectively. Methods like relative,
exponential, and absolute criticality offer frameworks for categorizing float
levels and assessing potential project risks. Calculating floats involves
analyzing activity duration, dependencies, and potential delays—often done
using project management software like Microsoft Project for accuracy and

efficiency.

Freefloat is particularly valuable during project execution asit allows
project managers to monitor activity delays within permissible limits before
they affect the entire project timeline. However, activities arranged "as soon
as possible" might exhibit zero free float, necessitating careful resource

management to prevent disruption in non-critical paths.

Proactive Project Management and Float-Based Scheduling

Active management of floatsis a hallmark of competent project

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

management. By closely monitoring not just critical paths but also
non-critical ones, project managers avoid potential pitfalls where non-critical
activities unexpectedly consume their float, turning critical. Regular float
assessment enables managers to foresee when non-critical activities might

become critical, allowing for timely proactive measures.

Float-based scheduling emerges as a strategic approach in resource
alocation. By prioritizing activities with the least float—those closest to
becoming critical—project managers effectively mitigate risk and optimize
resource utilization. This method involves balancing float consumption
against resource availability: resources can be deliberately reassigned

considerately, maintaining project timelines while managing costs.

Float and Risk M anagement

Resource all ocation decisions based on float assessment directly influence
project risk. Decreasing float to reduce costs can escalate project risk by
narrowing the margin for handling unforeseen delays. A balanceisthus
required: while efficient resource all ocation reduces costs, maintaining
adequate float preserves flexibility, minimizing the risk of turning

manageable delays into mgjor project inhibitors.

To conclude, the structured manipulation of total and free floats, combined

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

with strategic color-coded visualizations and float-based scheduling, enables
effective project management. Understanding and managing floats allows

project managers to balance cost and risk, ensuring timely project
completion.

Scan to Download

More Free Book %‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 14 Summary:

Chapter 8: Managing Project Risk with Float

In project management, adjusting the number of resourcesto lower costs
involves a complex trade-off between cost, schedule, and risk. For instance,
reducing the number of developers can cut costs but also increase risk by
reducing the project’ s buffer time or "float." Consequently, project managers
must actively manage float to balance these contrasting elements, thus
crafting multiple solutions that offer varied blends of cost, schedule, and
risk.

Chapter 9: Time and Cost Optimization

To deliver systems quickly, focus on the critical path—the sequence of tasks
that determines the project's minimum duration. Utilizing best practicesin
software engineering can streamline tasks along this path. Also, project
redesign can help compress this path and reduce timelines, essentially

balancing time and cost for maximum efficiency.

Chapter 10: Risk Management and Evaluation

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Project design options always involve trade-offs between time, cost, and

risk. Effective decision-making must incorporate risk quantification, yet
often, this aspect isignored because it is hard to measure. This chapter offers
methods to objectively assess risk, illustrating its interaction with time and

cost, and guiding the search for the project's optimal design point.

Through examples such as the time-risk curve, which reflects how
compressing project duration can increase risk, the chapter explains
nonlinear risk escalation. It unfolds around theories like Prospect Theory by
Kahneman and Tversky, which posits that people prioritize minimizing risk
over maximizing gains. Moreover, it provides practical illustrations with
concepts like the "da Vinci effect,” suggesting shorter-time projects might

often entail lower risk due to their robustness against unforeseen incidents.

After covering models of risk assessment such as the logistic function and
actual time-risk curves, the chapter shows how factors like floats can
indicate project risk, influencing decision-making. Notably, designrisk, a
type of risk associated with unforeseen challenges, is assessed through
floats, which make projects appear fragile or robust.

The chapter concludes with technigques for modeling and quantifying

different types of risk, emphasizing their comparative evaluation. Risk

values are normalized to easily juxtapose different projects, offering a

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

relative scale to denote risk rather than absolute values. By aligning risk
evaluation with cost, especially direct costs, decision-makers can choose
project paths that strategically balance risk while considering the indirect
costs associated with delays.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Critical Thinking

Key Point: Managing Project Risk with Float

Critical Interpretation: Understanding how to balance cost, schedule,
and risk by managing float can be a profound insight applicable to
everyday life. In your endeavors, be it personal or professional,
recognizing the importance of having a buffer may inspire you to
allocate resources wisely and plan diligently, creating room for
flexibility. By ensuring you have enough float, a metaphorical buffer
time or space, you can secure stability in your plans despite
unexpected challenges, thus improving your ability to adapt and
succeed. It teaches the valuable lesson of not stretching yourself too

thin and appreciating the balance between ambition and realism.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 15 Summary:

The chapter provides a comprehensive guide to assessing and managing
project risks, particularly focusing on schedule and cost overruns. These
risks are categorized into three main levels: high, medium, and low, based
on the notion of "float," which refersto the flexibility of atask’s scheduling.
Activities with low float are high-risk as any delay directly impacts the

project's timeline and costs.

The text advises excluding zero-duration activities, like milestones, from
risk analysis since they don't contribute to a project'srisk level. It also
introduces a method of color coding to classify tasks based on their total
float, assigning weights to each category, a methodology that allows for a
guantitative analysis of criticality risk. These weights can be customized, but
they must accurately reflect the risk levels of each category. A poorly
balanced set of weights could skew the risk analysis. The chapter provides a
formulafor calculating criticality risk and demonstrates that, by design, the
risk never falls to zero, which aligns with the understanding that undertaking

significant projects inherently involves some level of risk.

Further, the chapter introduces the Fibonacci Risk Model, taking inspiration
from the Fibonacci sequence—a mathematical sequence with applications
across nature and technology. Using this model can yield risk valuesthat are

aligned with the natural balancing tendency intrinsic to the sequence. This

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

model maintains a constant ratio similar to the golden ratio and can offer
insights into the project risk, particularly when using starting Fibonacci

numbers as weights.

Recognizing limitations in broad categorization, the chapter also presents an
activity risk model, providing a more granular approach to analyzing each
task's risks based on its float. While this model can be helpful, it's sensitive
to large discrepanciesin float among tasks—a single outlier can

unjustifiably increase risk estimates.

The text compares criticality risk to activity risk, noting that while criticality
risk often aligns with human intuition, activity risk provides a detailed view
of specific tasks, highlighting when floats are significant variables. In cases
where these models diverge, investigating the root cause is important, and a

potentially neutral Fibonacci Risk Model can serve as an arbitrator.

Compression and risk are discussed in terms of how parallelizing work in
projects—by executing tasks simultaneously to shorten timelines—can
provide risk benefits, principally by increasing float and reducing the
number of critical tasks. Y et, this compression exchanges design risk for
execution risk, requiring careful planning and resource management to

ensure project SUCCess.

Finally, the concept of risk decompression isintroduced as a method to

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

mitigate risk. By intentionally planning for later completion, project fragility
is reduced, making it less susceptible to unforeseen changes or challenges.
Decompression can be strategically beneficial when projects have excessive
risk, when past performance has been poor, when there are many

uncertainties, or when external factors constantly shift.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 16:

Chapter 7: Understanding Risk Decompression

In project management, a common error in risk mitigation is to pad
estimations, which can exacerbate issues and lower the chance of success.
Instead, decompression should focus on maintaining original estimations
while increasing the "float" or buffer time across all network paths.
Decompression involves extending deadlines to create time buffers that help
manage risk, but overdoing it leads to diminishing returns, wastes time, and
can actually increase risk. This process should be strategic, guided by risk
models to determine when decomposition achieves the target risk level

without adding unnecessary cost or delay.

Decompression can be applied to any project design, usually targeting the
standard solution. This method involves delaying the last project activity to
create buffer time for preceding activities. More insightful decompression
involves also targeting key activities along the critical path, mindful that any
upstream delay might consume the downstream buffer. Theaimisto
decreaserisk levelsto about 0.5 on the ideal risk curve, where

decompression yields the highest reduction in risk relative to time added.

Monitoring the actual risk curve against thisideal model helps clarify when

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

added time no longer significantly lowers risk, emphasizing the importance
of hitting the "sweet spot" where decompression maximizes benefits and
minimizes costs. This optimal point guides project design to ensure balance
between cost efficiency and risk management, advocating for a symbiotic
approach to decompression: enough to manage risk but not excessive to

inflate project cost and time.

Chapter 11: Navigating Project Design

For newcomers to project design, the challenge often liesin grasping the
overall flow rather than specific techniques. Losing sight of project goals
amidst details is common, and unexpected hurdles can derail less
experienced designers. A broader understanding of project design
emphasizes a mindset that navigates the design’ s iterative and systematic

processes effectively.

This chapter provides awalkthrough of an end-to-end design effort,
demonstrating the necessary thought processes and highlighting how each
step interlocks. By mastering this approach, designers can better handle
contingencies and maintain focus on overarching objectives, which is critical

in adapting to real-world deviations from the theoretical design strategies.

Chapter 12: Mastering Advanced Project Design Techniques

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Expanding upon foundational concepts, this chapter delves into advanced
strategies for handling the complexities and risks inherent in project design.
These techniques are applicable broadly, not just in intricate or massive

projects, but crucial in managing complexities and risks effectively.

One key areais managing “god activities,” which are excessively large or
uncertain tasks that skew project metrics and risks due to their size and
placement on the critical path. Breaking these into smaller, manageabl e tasks
improves estimations, clarifies risks, and aligns project efforts more closely
with realistic outcomes. Mini project management within these larger tasks

or developing parallel work streams can reduce their impact.

This advanced exploration continues by introducing the "risk crossover
point," amore precise metric guiding project decisions. It identifies where
the risk's rate of increase surpasses that of direct cost, typically aligning with
arisk value of 0.75. This point, indicating where caution is warranted,

suggests limiting compression to avoid unsustainable risk increases.

The crossover point is determined by analyzing the growth rates of risk and
direct-cost curves, highlighting its role as both a precautionary measure and
atool for making informed project design choices. Mastery of these

advanced technigques empowers designers to navigate projects through

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey %‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

Free Picks

Today's Bookey

(-

Gt encugh pointg ¢

0 donate 5 Book

Get Points
F You

Finish g Buokw loday

Achieve loday's daily goal

————

17:53

TE
=

=] i Hannah @

Daily Goals

> is first for me. How the 2
* makes me feel, it's like
-Ithas to Match my ife,
5 happening around me
2. That's where it comes
from,

Boots Riley

T ctay stemat

Bast scone: 2 gy

Time of Use

6183

Finished

162

l
&l

&
* - * @

13

Atomice Habits

Faur

36 man

Description

17:259

Library

O Saved
& Downloaded

& Finished

History

rid’ bestideas
m:ock your potencial

Free Trial with Bookey

OlepsOl of

.

GETITON

Scan to download

Download on the

App Store

steps to buig 9ood habits

and bregk

bad ones

3 key insighy Finish

3k up aat

= 105e weight? Why cany

¥? 151t becayse

Master time ma,

° e

Overview

Hi, welcome 16 Bookey, loday we)

unlock the baok Atomi Habits: An Easy
& Proven Way 1o Build Goog Habirs &
Break Bad Ones.

Imagine you, € situng in a plape fying
Irom Los Angeles 1o New York ¢ ity. Duye
10 a mysteripys and undetec table
twrbulenee Your aircrafy's nose shifys
more than 7 feet, 3.5 degrees 1p the
south, Afier five hours of flying, befare

¥ou know ji. the plane js |’.|mf|njf

—
17:46 FE
4 Leaming Paths

()ug()ing

Develop leadership skills

- Your Writing s

17:27
e e

x Wh It Takes >

Never ¢

Schwarzman's relentiess
Tunds for Blackstone's firgs
Cvércoming nUmeroys reje
the importance of persista
t-l\lre|alﬂlleur-i.‘lu3 Afer g

Successtully raigeq $850

erDeetation &

17:26

§ Top 10 £ of the m

10

i

bl Howtotak g any
-

[
1

Alom

https://ohjcz-alternate.app.link/LViWF8VnuOb
https://ohjcz-alternate.app.link/ICzfYbXnuOb

chapter 17 Summary:

The chapters presented delve into the comparison and management of
project risk and direct costs using mathematical and statistical
methodologies. Central to the chaptersis the concept of using derivatives to
understand the relationship between risk and cost over time, specifically

when risk and cost grow at diminishing rates.

Firstly, to compare the derivatives of risk and direct cost, both of which are
decreasing as time progresses, absol ute values must be considered due to the
negative growth rates. Additionally, since risk values are often between O
and 1 and cost values significantly higher (e.g., around 30), a scaling factor
is necessary. Thisfactor is calculated at the point of maximum risk,

providing a comparable measure for analysis.

The chapters identify critical points known as "crossover points' on arisk
curve. These points, where the risk derivative equals the cost derivative,
occur twice in the project timeline. At 9.03 months, risk is high, suggesting
designs |eft of this point are too risky. By 12.31 months, risk is significantly
lower, indicating that designs beyond this point are overly conservative. The

ideal design solution lies between these points, balancing risk and feasibility.

Chapter 10 discusses the concept of “decompression target” in risk

management. Here, the goal is to reduce risk by decompressing schedules

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

dightly—a point where risk reaches 0.5 is optimal, offering maximum risk
reduction with minimal schedule change. Thisisidentified asacritical point
on the curve (alocation where the risk curve's second derivative is zero),

defined mathematically to ensure objectivity.

This methodology is crucial when visual cues on risk charts are insufficient
due to skewed risk curves. It also highlights the importance of precise

calculation over mere estimation, providing repeatable results.

Moving beyond arithmetic methods, the chapters introduce the use of
geometric means to improve the accuracy of risk assessments, especially
when dealing with uneven distributions of values. Unlike arithmetic means,
geometric means reduce the impact of extreme outliers. For example, while
the arithmetic mean of [1, 2, 3, 1000] is skewed by the outlier to 252, the
geometric mean positions it more accurately at 8.8, reflecting the lower

values better.

This principle leads to the development of a geometric criticality risk
formula, which uses the power of critical activities weights rather than a
simple multiplication. This approach results in a geometric criticality risk
that is slightly lower but often more representative than its arithmetic

counterpart due to less susceptibility to extremes.

Overall, these chapters advocate for a multifaceted approach to project

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

management, leveraging cal culus and geometry to tailor risk management
and cost assessment to the unique contours of each project, and enhancing

the decision-making process with robust, mathematical backing.

More Free Book %\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 18 Summary:

The chapters delve into the complexities of project risk management and
execution complexity in project design. The geometric Fibonacci risk model
isintroduced alongside its arithmetic counterpart. It offers away to assess
risk by calculating the geometric mean of activity floats within a project.
Critical activities, which have zero float, present challengesin this
calculation, thus requiring specific adjustments, such as adding one to all
values before determining the geometric mean. The geometric risk model
mirrors the behavior of the arithmetic model but typically resultsin higher
risk values. Thisimplies that the model might be lessintuitive, given that it

can display different behaviors without clear guidelines.

The utility of the geometric risk model is considered less significant than its
arithmetic counterpart, except when evaluating projects with highly critical
activities or "god activities." These are project activities with
disproportionately large impacts or resources, skewing arithmetic models
towards afalse sense of security. The geometric model, in contrast,
maintains an anticipated high-risk value, providing a more accurate

depiction of projects densely packed with critical activities.
The text progresses into the assessment of execution complexity, introducing

the concept of cyclomatic complexity. This measure helps determine the

connectivity complexity of a project, defined numerically by the project's

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

internal dependencies and represented through a simplified network of
activities. Typically, projects with higher cyclomatic complexity have
increased challenges and risks due to cascading delays from any dependency
failures. While sequential projects tend to have lower complexity, parallel
projects with numerous interdependencies often demand more resources and
alarger, less efficient team, leading to increased management challenges and

higher execution risks.

Furthermore, the text outlines the significance of balancing complexity in
project compression scenarios, where skilled resources may mitigate certain
complexities without altering project networks. It is noted that complexity
usually escalates non-linearly with increased compression, though
well-designed projects can handle elevated complexity with appropriate

strategies, resources, and execution methodol ogies.

The chapters conclude by addressing the complexities involved in managing
very large projects or megaprojects. These require careful design due to their
inherent scale and the multitude of activities, resources, and constraints.
Larger projects often carry heightened stakes and risks of failure, primarily
due to their complex interdependencies and the pressure of ambitious
schedules. The narrative emphasi zes that while complexity can contribute to
project fragility, effective design, organization, and execution can mitigate
some risks, aligning with Nassim Nicholas Taleb's ideas on complexity and

fragility from "Antifragile." Overall, the chapters underline the importance

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

of understanding both risk and complexity to optimize the design and

execution of projects, large and small.

More Free Book %\ s e
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 19 Summary:

The chapter explores the intricacies of complex systems, contrasting them
with ssimpler, deterministic systems. Understanding complex systemsis
crucial for predicting and managing their behavior, something that is
inherently challenging due to their nonlinear responses to changes. Complex
systems, like the weather, economy, or even software, demonstrate
unpredictable behaviors not necessarily due to complicated internal parts but
rather due to drivers such as connectivity, diversity, interactions, and
feedback loops. For instance, a simple pendulum or the interactions of three

orbiting bodies are examples of complex systems.

Initially, complex software systems were confined to domains like nuclear
reactors that are inherently complex. However, advancementsin
connectivity, diversity, and cloud computing have led even regular
enterprise systems to exhibit complex traits. The presence of acritical
complexity phenomenon, as exemplified by the "last-snowflake-effect,"
highlights how a small change can trigger massive system failures due to

nonlinear growth in complexity.

Complexity theory posits that all complex systems are defined by
connectivity, diversity, interactions, and feedback loops. These elements
explain the behavior of such systems, demonstrating why actions in a system

can have widespread, unpredictable impacts—akin to ripple effects defined

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

by Metcalfe's Law. Systems with a high degree of diversity, such asan
airline using multiple aircraft types, face increased complexity and potential

failure compared to those with uniform processes.

Moreover, the chapter delvesinto how complexity affects system quality and
the resultant vulnerability to failure. The infamous failure of the space
shuttle in 1986 due to a malfunctioning O-ring illustrates how one
component's failure can jeopardize an entire system. Therefore, ensuring
high quality at every level of asystem iscrucial, as deficiencies can

critically degrade the overall system performance.

The solution lies in approaching large projects as a " network of networks,"
breaking them down into smaller, less complex, and more manageable
subnets. This segmentation reduces the project's vulnerability to failure by
decreasing overall complexity. However, designing such a network requires
an initial careful examination, identifying key junctions, and understanding
dependencies and timing within projects. Achieving a successful
segmentation often demands anticipating potential dependencies that can
inhibit parallel progress, and resolving these through innovations in

architecture and automation.
The chapter also considers organizational dynamics, such as how internal

structures and communication flows can inadvertently dictate the design of a

system—a concept known as Conway's Law. Restructuring the organization

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

to reflect the desired system design can counteract this, but it requires
strategic planning and possibly even reorganization, to align with the

complexity needs of the project.

In the context of small projects, the impact of errorsis proportionally greater
due to limited resources. Thus, careful design is still essential, although the
simpler nature of small projects can bypass some complexities.large projects
can counter Conway’s Law by mirroring their segmentation within

organizational structures.

Finally, the chapter introduces a"design by layers' approach, where project
designs are structured according to architectural layers rather than just
logical dependencies. Thistechnique allows for parallel work across
architecture components, enabling a more robust and flexible development

Process.

Overall, the chapter underscores the challenges and strategies in managing
complexity across systems, advocating for amethodical, innovative
approach to align project design with organizational and technological

capabilities.

More Free Book %‘\ R
Scan to ownl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 20:

This section of the book discusses two methodologies for project design:
by-layers and by-dependencies, each with distinct features and associated
challenges. Designing by-layers organizes the project into clearly defined
stages or layers, such as foundation, plumbing, walls, and roof for a building
project, which is inherently simpler to manage but can increase the risk of
delays. Thismethod is particularly suitable for straightforward projects, as it
reduces cyclomatic complexity—the measure of a code's
complexity—substantially when compared to designing by dependencies,
which involves planning around the interconnected tasks and their logical
dependencies. However, designing by-layers assumes that subsequent layers
cannot commence without completing the current one, which can lead to

project delays if any layer faces ahurdle.

The book highlights the necessity to incorporate risk management strategies,
like risk decompression, for projects designed by-layers to manage their
higher risk profiles effectively. Despite potential delays, this approach offers
advantages in managing complexity and is commended for its ease of
execution compared to facing the intricacies of atypical project network. For
projects where both time and capacity extensions are tolerable, complexity
management becomes the real challenge, for which the by-layers design

reduces execution complexity substantially.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

Moreover, one can integrate the design methodol ogies of by-layers and
by-dependencies to tailor to specific project needs, highlighting the
adaptability of the presented design techniques. The method-based systems
discussed underline the importance of architectural strategiesin executing
straightforward and seamless project designs by focusing on integration
rather than implementation details. Each method serves to decompose a
project into smaller, manageabl e subprojects, aligning with the book’s

broader guidance on efficient project design practices.

The subsequent chapters focus on real-world applications of these

methodol ogies using examples from past projects. A key takeaway isto shift
the mindset towards complete command over all project aspects, addressing
risks with measured preparation beyond ssmply calculating costs and
timelines. Practical project management should engage with a holistic
approach, considering personal attitudes and rel ationships within the team
and stakeholders. Chaptersillustrate that designing a project isn't just
locking down technical details; rather, it involves ongoing refinements and
adaptations, especially when personal investments or high accountability

stakes are involved.

Lastly, the book stresses the financial aspect of project design, advocating
for aclear understanding of the project's cash flow to garner support from
upper management who may have a vested interest in the project's financia

outcomes. Thisinsight insists that a robust project design, aligned with the

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

correct architecture, is pivotal for sound financial planning and project
success. Ultimately, sound project design is portrayed as a balance between

strategic planning and feasible execution, ensuring that value is extracted

Install Bookey App to Unlock Full Text and
Audio

Free Trial with Bookey k‘\

https://ohjcz-alternate.app.link/zWumPVSnuOb

N 4 th(

'
Try Bookey App to read 1000+
summary of world best books
Unlock Titles, Topics
New titles added every week

Brand %— Leadership & Collaboration @ Time Management (=) Relationship & Communication
ness Strategy @ Creativity Public Money & Investing @ Know Yourself {’_’P Positive F
? Entrepreneurship World History C\Q Parent-Child Communication @ Self-care é.i.:\ Mind & Spi

Insights of world best books

THINKING, ATOMIC HABITS
FAST AND SLOW Mastering the art of power, to

have the strength to confront
complicated situations

—

M

HOW TO TALK
TO ANYONE D:,::I).Du

Chiv

N'

&

pn
-

Free Trial with Bookey:

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 21 Summary:

The provided chapters delve into strategic project management, focusing on
the dynamics between effort estimation, creative project design, and
strategic resource allocation. The core message isthat in any sizeable
project, individual estimation errors tend to offset each other, and the
abilities of developers generally balance out unless dealing with extremes.
The emphasis should be on creativity in design, understanding constraints,

and addressing potential pitfalls rather than overly precise estimations.

Design Approach: It's crucial to adapt project design tools to specific
contexts without sacrificing results. The book encourages opennessin the
design process to build trust among stakeholders and to explain the rationale

behind design decisions.

Optionality: Managers should be presented with multiple project
options—typically three to four—to choose the best fit concerning time,
cost, and risk. This aligns with providing a sense of empowerment and
responsibility, avoiding the pitfalls of having too many choices which can

lead to decision paralysis.
Compression: While it's important to compress project timelines, the

chapters suggest a maximum of 30% compression to maintain quality and

manage risks effectively. Gaining insights into the project's behavior through

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

compression aids in assessing the impacts of scheduling changes. This
knowledge enables objective discussions with stakeholders, turning intuitive

decisions into data-driven ones.

Resour ce Allocation: When employing top resources for project
compression, it's essential to do so judiciously. Top talent is often scarce,
and misallocation can create new bottlenecks or critical paths, reducing
efficiency. Therefore, careful consideration of where to best apply such

high-caliber resourcesis crucial for maximizing benefits.

Trimming the Fuzzy Front End The initial phase of a project, often
laden with uncertainty, can be made more efficient through parallel work on
preparatory tasks. By streamlining early phases, project timelines can be

significantly shortened without affecting later stages.

Planning and Risk Management: Incorporating enough 'float' in
scheduling provides both psychological comfort and practical flexibility in
adapting to unexpected changes. The behavior of a project under different
risk scenariosis more insightful than static risk values. Identifying risk

tipping points assists in managing project stability and adaptability.
Project Design: Project design requires meticulous attention and should

be treated as a comprehensive design exercise in itself. Key activities

include gathering core use cases, system design, and evaluating different

Dlgrid

More Free Book R
Cof 2
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

design solutions through detailed analysis and adjustments.

Per spective on Scope and Effort: The architecture of a software system
must be extensive in scope but efficient in effort, aiming to avoid costly
changes due to poor design. While broad in scope, architecture should be

limited in design effort, allowing for fast yet solid foundational work.
Detailed design, particularly in services or user interfaces, requires more
time but remains limited in scope. Ultimately, coding is the most
time-consuming and should be approached methodically, one service at a

time.

These chapters collectively provide a sophisticated blueprint for effective
project management, emphasizing flexibility, informed decision-making,

and strategic allocation of resourcesto align with project goals.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 22 Summary:

Chapter Summary: Project Design and Execution Strategies

The chapters explore the intricacies of designing and executing a software
project while ensuring high quality and efficiency. A pivotal concept
discussed is the mapping of subsystems to vertical slices of architecture,
allowing for efficient project execution by dividing alarge project into
independent subsystems. Within this framework, teams can choose between
sequential or parallel project lifecycles. A sequential approach involves
completing one subsystem entirely before beginning the next, asillustrated
in Figure 14-4, while a parallel approach, shown in Figure 14-5, allows for
overlapping development phases or fully independent pipelines, depending

on dependencies.

Team Composition and Hand-Offs

A significant determinant of a project’ s design is team composition,
particularly the balance between senior and junior devel opers. Senior
developers have the expertise to conduct detailed design work, which
involves defining service interfaces, messages, and data contracts, as well as

internal details such as class hierarchies. With an effective "senior hand-off,"

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

senior devel opers can assume these responsibilities with minimal guidance,
thereby streamlining the project by compressing schedules and eliminating
bottlenecks. Conversely, a"junior hand-off" occurs when junior developers
are tasked with detailed design, amplifying the architect’ s workload and
potentially slowing the project when all design work must be completed

upfront.

Best Practicesfor Mitigating Risk

To mitigate risks associated with junior hand-offs, the strategy suggests
involving senior developers as junior architects, who can guide detailed
design under the architect's supervision. This approach optimizes project
flow by maintaining a robust architecture and construction framework and
preparing junior devel opers through guided learning. Detailed service design
precedes construction, ensuring that junior developers have a concrete plan

to follow.
Developing Project Design Skills
The chapters emphasi ze the importance of mastering project design, which

requires practice and continuous improvement, much like any other

profession. A systematic approach to project design involves understanding

Dlgrid

More Free Book R
[0
Scan to Download

https://ohjcz-alternate.app.link/zWumPVSnuOb

planning assumptions and eval uating past projects to identify successes and
failures. Such evaluations not only enhance one's ability to design effective

projects but also develop a nuanced intuition for potential pitfalls.

Debriefing for Continuous I mprovement

The value of debriefing each project—successful or not—is underscored as a
method for sharing lessons learned and improving future projects. Key areas
to focus on during debriefing include accuracy of estimations, design
efficacy, team collaboration, and recurring issues. Debriefs encourage
reflection and identify areas for improvement, fostering a culture of quality

and responsibility.

Commitment to Quality

Overadll, these chapters highlight that quality is central to successful software
development. A well-designed project with comprehensive quality control
ensures that quality is embedded in every aspect of development. Quality
control activities should be integral to project plans, ensuring minimal
defects, increased productivity, and reduced stress. Thisresultsin a
high-quality product delivered within budget and on schedule, with ateam

that is more efficient, motivated, and confident.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

chapter 23 Summary:

The passage emphasi zes the importance of integrating quality control and
assurance into software development to achieve high-quality outcomes and
promote a healthier work environment. It suggests implementing robust
guality control activities such as service-level testing, system testing, and
automated regression testing to identify and fix defects cost-effectively. By
prioritizing quality, the process becomes more efficient, lowering stress and

fostering pride among team members.

Quality assurance should also be prioritized through activities like training,
authoring Standard Operating Procedures (SOPs), and adopting design and
coding standards. Engaging with a dedicated quality assurance expert helps
refine the process to prevent defects or address them proactively. Collecting
and analyzing key metrics can detect issues before they escalate, while

structured debriefings after milestones ensure continuous i mprovement.

The passage also discusses the impact of culture on quality. A lack of trust
often leads to micromanagement, which frustrates devel opers and diminishes
accountability. To counter this, teams should adopt an obsessive focus on
guality, enabling them to operate autonomously and achieve engineering
excellence. This shift from micromanagement to quality assurance

empowers teams and results in better productivity.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

The conclusion draws parallels with historical military strategy, specifically
referencing Field Marshal Helmuth von Moltke's principle of adaptable
planning. Just as Moltke advocated for flexible strategiesin warfare,
software projects should accommodate changing circumstances through
flexible and thorough planning. By combining meticulous quality practices
and adaptabl e strategies, teams can manage projects effectively, producing

superior software with minimal oversight.

More Free Book %‘\ R
Scan to ov-vnl

https://ohjcz-alternate.app.link/zWumPVSnuOb

